org.bouncycastle.pqc.crypto.gemss.GeMSSKeyPairGenerator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-debug-jdk15to18 Show documentation
Show all versions of bcprov-debug-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.
The newest version!
package org.bouncycastle.pqc.crypto.gemss;
import java.security.SecureRandom;
import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
import org.bouncycastle.crypto.AsymmetricCipherKeyPairGenerator;
import org.bouncycastle.crypto.KeyGenerationParameters;
import org.bouncycastle.crypto.digests.SHAKEDigest;
public class GeMSSKeyPairGenerator
implements AsymmetricCipherKeyPairGenerator
{
private SecureRandom random;
private GeMSSParameters parameters;
@Override
public void init(KeyGenerationParameters param)
{
random = param.getRandom();
parameters = ((GeMSSKeyGenerationParameters)param).getParameters();
}
@Override
public AsymmetricCipherKeyPair generateKeyPair()
{
GeMSSEngine engine = parameters.getEngine();
int i, ret;
byte[] seed = sec_rand(engine.SIZE_SEED_SK);
int NB_COEFS_HFEPOLY = (2 + engine.HFEDegJ + ((engine.HFEDegI * (engine.HFEDegI + 1)) >>> 1));
int NB_COEFS_HFEVPOLY = (NB_COEFS_HFEPOLY + (engine.NB_MONOMIAL_VINEGAR - 1) + (engine.HFEDegI + 1) * engine.HFEv);
int NB_UINT_HFEVPOLY = NB_COEFS_HFEVPOLY * engine.NB_WORD_GFqn;
int sk_uncomp_length = ((NB_UINT_HFEVPOLY + (engine.LTRIANGULAR_NV_SIZE << 1) + (engine.LTRIANGULAR_N_SIZE << 1))) << 3;
Pointer F = new Pointer(sk_uncomp_length >>> 3);
byte[] sk_uncomp = new byte[sk_uncomp_length];
SHAKEDigest shakeDigest = new SHAKEDigest(engine.ShakeBitStrength);
shakeDigest.update(seed, 0, engine.SIZE_SEED_SK);
shakeDigest.doFinal(sk_uncomp, 0, sk_uncomp_length);
byte[] sk = new byte[engine.SIZE_SEED_SK];
final int SIZE_PK_HFE = (engine.NB_MONOMIAL_PK * engine.HFEm + 7) >> 3;
byte[] pk = new byte[SIZE_PK_HFE];
System.arraycopy(seed, 0, sk, 0, sk.length);
F.fill(0, sk_uncomp, 0, sk_uncomp.length);
engine.cleanMonicHFEv_gf2nx(F);
Pointer Q = new Pointer(engine.NB_MONOMIAL_PK * engine.NB_WORD_GFqn);
if (engine.HFEDeg > 34)
{
engine.genSecretMQS_gf2_opt(Q, F);
}
Pointer S = new Pointer(engine.MATRIXnv_SIZE);
Pointer T = new Pointer(S);
Pointer L = new Pointer(F, NB_UINT_HFEVPOLY);
Pointer U = new Pointer(L, engine.LTRIANGULAR_NV_SIZE);
engine.cleanLowerMatrix(L, GeMSSEngine.FunctionParams.NV);
engine.cleanLowerMatrix(U, GeMSSEngine.FunctionParams.NV);
/* Compute Q'=S*Q*St (with Q an upper triangular matrix) */
engine.invMatrixLU_gf2(S, L, U, GeMSSEngine.FunctionParams.NV);
if (engine.HFEDeg <= 34)
{
ret = engine.interpolateHFE_FS_ref(Q, F, S);
if (ret != 0)
{
throw new IllegalArgumentException("Error");
}
}
else
{
engine.changeVariablesMQS64_gf2(Q, S);
}
L.move(engine.LTRIANGULAR_NV_SIZE << 1);
U.changeIndex(L.getIndex() + engine.LTRIANGULAR_N_SIZE);
engine.cleanLowerMatrix(L, GeMSSEngine.FunctionParams.N);
engine.cleanLowerMatrix(U, GeMSSEngine.FunctionParams.N);
engine.invMatrixLU_gf2(T, L, U, GeMSSEngine.FunctionParams.N);
if (engine.HFEmr8 != 0)
{
final int MQ_GFqm8_SIZE = (engine.NB_MONOMIAL_PK * engine.NB_BYTES_GFqm + ((8 - (engine.NB_BYTES_GFqm & 7)) & 7));
PointerUnion pk_cp = new PointerUnion(MQ_GFqm8_SIZE);
/* for each monomial of MQS and pk */
for (i = (engine.NB_BYTES_GFqm & 7) != 0 ? 1 : 0; i < engine.NB_MONOMIAL_PK; ++i)
{
engine.vecMatProduct(pk_cp, Q, T, GeMSSEngine.FunctionParams.M);
/* next monomial */
Q.move(engine.NB_WORD_GFqn);
pk_cp.moveNextBytes(engine.NB_BYTES_GFqm);
}
/* Last monomial: we fill the last bytes of pk without 64-bit cast. */
if ((engine.NB_BYTES_GFqm & 7) != 0)
{
Pointer pk_last = new Pointer(engine.NB_WORD_GF2m);
engine.vecMatProduct(pk_last, Q, T, GeMSSEngine.FunctionParams.M);
for (i = 0; i < engine.NB_WORD_GF2m; ++i)
{
pk_cp.set(i, pk_last.get(i));
}
}
pk_cp.indexReset();
byte[] pk_U = new byte[engine.HFEmr8 * engine.NB_BYTES_EQUATION];
engine.convMQS_one_to_last_mr8_equations_gf2(pk_U, pk_cp);
pk_cp.indexReset();
if (engine.HFENr8 != 0 && engine.HFEmr8 > 1)
{
engine.convMQS_one_eq_to_hybrid_rep8_uncomp_gf2(pk, pk_cp, pk_U);
}
else
{
engine.convMQS_one_eq_to_hybrid_rep8_comp_gf2(pk, pk_cp, pk_U);
}
}
else
{
PointerUnion pk_last = new PointerUnion(engine.NB_WORD_GF2m << 3);
int pk_p = 0;
for (i = 0; i < engine.NB_MONOMIAL_PK; ++i)
{
engine.vecMatProduct(pk_last, Q, T, GeMSSEngine.FunctionParams.M);
pk_p = pk_last.toBytesMove(pk, pk_p, engine.NB_BYTES_GFqm);
pk_last.indexReset();
Q.move(engine.NB_WORD_GFqn);
}
}
return new AsymmetricCipherKeyPair(new GeMSSPublicKeyParameters(parameters, pk),
new GeMSSPrivateKeyParameters(parameters, sk));
}
private byte[] sec_rand(int n)
{
byte[] rv = new byte[n];
random.nextBytes(rv);
return rv;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy