org.bouncycastle.pqc.crypto.rainbow.RainbowKeyComputation Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-debug-jdk15to18 Show documentation
Show all versions of bcprov-debug-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.
The newest version!
package org.bouncycastle.pqc.crypto.rainbow;
import java.security.SecureRandom;
import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
import org.bouncycastle.util.Arrays;
class RainbowKeyComputation
{
private SecureRandom random;
private Version version;
private RainbowParameters rainbowParams;
ComputeInField cf = new ComputeInField();
private int v1;
private int o1;
private int o2;
private byte[] sk_seed;
private byte[] pk_seed;
private short[][] s1;
private short[][] t1;
private short[][] t2;
private short[][] t3;
private short[][] t4;
private short[][][] l1_F1;
private short[][][] l1_F2;
private short[][][] l2_F1;
private short[][][] l2_F2;
private short[][][] l2_F3;
private short[][][] l2_F5;
private short[][][] l2_F6;
private short[][][] l1_Q1;
private short[][][] l1_Q2;
private short[][][] l1_Q3;
private short[][][] l1_Q5;
private short[][][] l1_Q6;
private short[][][] l1_Q9;
private short[][][] l2_Q1;
private short[][][] l2_Q2;
private short[][][] l2_Q3;
private short[][][] l2_Q5;
private short[][][] l2_Q6;
private short[][][] l2_Q9;
public RainbowKeyComputation(RainbowParameters params, SecureRandom random)
{
this.rainbowParams = params;
this.random = random;
this.version = this.rainbowParams.getVersion();
this.v1 = rainbowParams.getV1();
this.o1 = rainbowParams.getO1();
this.o2 = rainbowParams.getO2();
}
public RainbowKeyComputation(RainbowParameters params, byte[] pk_seed, byte[] sk_seed)
{
this.rainbowParams = params;
this.random = null;
this.version = this.rainbowParams.getVersion();
this.pk_seed = pk_seed;
this.sk_seed = sk_seed;
this.v1 = rainbowParams.getV1();
this.o1 = rainbowParams.getO1();
this.o2 = rainbowParams.getO2();
}
private void generate_S_and_T(SecureRandom sk_random)
{
this.s1 = RainbowUtil.generate_random_2d(sk_random, o1, o2);
this.t1 = RainbowUtil.generate_random_2d(sk_random, v1, o1);
this.t2 = RainbowUtil.generate_random_2d(sk_random, v1, o2);
this.t3 = RainbowUtil.generate_random_2d(sk_random, o1, o2);
}
private void generate_B1_and_B2(SecureRandom pk_random)
{
this.l1_Q1 = RainbowUtil.generate_random(pk_random, o1, v1, v1, true);
this.l1_Q2 = RainbowUtil.generate_random(pk_random, o1, v1, o1, false);
this.l2_Q1 = RainbowUtil.generate_random(pk_random, o2, v1, v1, true);
this.l2_Q2 = RainbowUtil.generate_random(pk_random, o2, v1, o1, false);
this.l2_Q3 = RainbowUtil.generate_random(pk_random, o2, v1, o2, false);
this.l2_Q5 = RainbowUtil.generate_random(pk_random, o2, o1, o1, true);
this.l2_Q6 = RainbowUtil.generate_random(pk_random, o2, o1, o2, false);
}
// t4 = t1 * t3 -t2
private void calculate_t4()
{
short[][] temp = cf.multiplyMatrix(this.t1, this.t3);
this.t4 = cf.addMatrix(temp, this.t2);
}
private void calculate_F_from_Q()
{
// Layer 1
// F1 = Q1
this.l1_F1 = RainbowUtil.cloneArray(this.l1_Q1);
// F2 = (Q1 + Q1_trans) * T1 + Q2
this.l1_F2 = new short[this.o1][][];
for (int k = 0; k < this.o1; k++)
{
this.l1_F2[k] = cf.addMatrixTranspose(this.l1_Q1[k]);
this.l1_F2[k] = cf.multiplyMatrix(this.l1_F2[k], this.t1);
this.l1_F2[k] = cf.addMatrix(this.l1_F2[k], this.l1_Q2[k]);
}
// Layer 2
this.l2_F2 = new short[this.o2][][];
this.l2_F3 = new short[this.o2][][];
this.l2_F5 = new short[this.o2][][];
this.l2_F6 = new short[this.o2][][];
// F1 = Q1
this.l2_F1 = RainbowUtil.cloneArray(this.l2_Q1);
for (int k = 0; k < this.o2; k++)
{
// F2 = (Q1 + Q1_trans) * T1 + Q2
short[][] Q1Q1_t = cf.addMatrixTranspose(this.l2_Q1[k]);
this.l2_F2[k] = cf.multiplyMatrix(Q1Q1_t, this.t1);
this.l2_F2[k] = cf.addMatrix(this.l2_F2[k], this.l2_Q2[k]);
// F3 = (Q1 + Q1_trans) * T4 + Q2 * T3 + Q3
this.l2_F3[k] = cf.multiplyMatrix(Q1Q1_t, this.t4);
short[][] temp = cf.multiplyMatrix(this.l2_Q2[k], this.t3);
this.l2_F3[k] = cf.addMatrix(this.l2_F3[k], temp);
this.l2_F3[k] = cf.addMatrix(this.l2_F3[k], this.l2_Q3[k]);
// F5 = UT( T1_trans * (Q1 * T1 + Q2) + Q5)
temp = cf.multiplyMatrix(this.l2_Q1[k], this.t1);
temp = cf.addMatrix(temp, this.l2_Q2[k]);
short[][] T1_trans = cf.transpose(this.t1);
this.l2_F5[k] = cf.multiplyMatrix(T1_trans, temp);
this.l2_F5[k] = cf.addMatrix(this.l2_F5[k], this.l2_Q5[k]);
this.l2_F5[k] = cf.to_UT(this.l2_F5[k]);
// F6 = T1_trans * (Q1 + Q1_trans) * T4 + T1_trans * Q2 * T3 + T1_trans * Q3 + Q2_trans * T4 + (Q5 + Q5_trans) * T3 + Q6
// = T1_trans * F3 + Q2_trans * T4 + (Q5 + Q5_trans) * T3 + Q6
this.l2_F6[k] = cf.multiplyMatrix(T1_trans, this.l2_F3[k]);
temp = cf.multiplyMatrix(cf.transpose(this.l2_Q2[k]), this.t4);
this.l2_F6[k] = cf.addMatrix(this.l2_F6[k], temp);
temp = cf.addMatrixTranspose(this.l2_Q5[k]);
temp = cf.multiplyMatrix(temp, this.t3);
this.l2_F6[k] = cf.addMatrix(this.l2_F6[k], temp);
this.l2_F6[k] = cf.addMatrix(this.l2_F6[k], this.l2_Q6[k]);
}
}
private void calculate_Q_from_F()
{
short[][] T1_trans = cf.transpose(this.t1);
short[][] T2_trans = cf.transpose(this.t2);
// Layer 1
// Q1 = F1
this.l1_Q1 = RainbowUtil.cloneArray(this.l1_F1);
// Q2 = (F1 + F1_trans) * T1 + F2
this.l1_Q2 = new short[this.o1][][];
for (int k = 0; k < this.o1; k++)
{
this.l1_Q2[k] = cf.addMatrixTranspose(this.l1_F1[k]);
this.l1_Q2[k] = cf.multiplyMatrix(this.l1_Q2[k], this.t1);
this.l1_Q2[k] = cf.addMatrix(this.l1_Q2[k], this.l1_F2[k]);
}
calculate_l1_Q3569(T1_trans, T2_trans);
// Layer 2
this.l2_Q2 = new short[this.o2][][];
this.l2_Q3 = new short[this.o2][][];
this.l2_Q5 = new short[this.o2][][];
this.l2_Q6 = new short[this.o2][][];
short[][] F1F1_t;
short[][] temp;
// Q1 = F1
this.l2_Q1 = RainbowUtil.cloneArray(this.l2_F1);
for (int k = 0; k < this.o2; k++)
{
// Q2 = (F1 + F1_trans) * T1 + F2
F1F1_t = cf.addMatrixTranspose(this.l2_F1[k]);
this.l2_Q2[k] = cf.multiplyMatrix(F1F1_t, this.t1);
this.l2_Q2[k] = cf.addMatrix(this.l2_Q2[k], this.l2_F2[k]);
// Q3 = (F1 + F1_trans) * T2 + F2 * T3 + F3
this.l2_Q3[k] = cf.multiplyMatrix(F1F1_t, this.t2);
temp = cf.multiplyMatrix(this.l2_F2[k], this.t3);
this.l2_Q3[k] = cf.addMatrix(this.l2_Q3[k], temp);
this.l2_Q3[k] = cf.addMatrix(this.l2_Q3[k], this.l2_F3[k]);
// Q5 = UT( T1_trans * (F1 * T1 + F2) + F5)
temp = cf.multiplyMatrix(this.l2_F1[k], this.t1);
temp = cf.addMatrix(temp, this.l2_F2[k]);
this.l2_Q5[k] = cf.multiplyMatrix(T1_trans, temp);
this.l2_Q5[k] = cf.addMatrix(this.l2_Q5[k], this.l2_F5[k]);
this.l2_Q5[k] = cf.to_UT(this.l2_Q5[k]);
// Q6 = T1_trans * (F1 + F1_trans) * T2 + T1_trans * F2 * T3 + T1_trans * F3 + F2_trans * T2 + (F5 + F5_trans) * T3 + F6
// = T1_trans * Q3 + F2_trans * T2 + (F5 + F5_trans) * T3 + F6
this.l2_Q6[k] = cf.multiplyMatrix(T1_trans, this.l2_Q3[k]);
temp = cf.multiplyMatrix(cf.transpose(this.l2_F2[k]), this.t2);
this.l2_Q6[k] = cf.addMatrix(this.l2_Q6[k], temp);
temp = cf.addMatrixTranspose(this.l2_F5[k]);
temp = cf.multiplyMatrix(temp, this.t3);
this.l2_Q6[k] = cf.addMatrix(this.l2_Q6[k], temp);
this.l2_Q6[k] = cf.addMatrix(this.l2_Q6[k], this.l2_F6[k]);
}
calculate_l2_Q9(T2_trans);
}
private void calculate_Q_from_F_cyclic()
{
short[][] T1_trans = cf.transpose(this.t1);
short[][] T2_trans = cf.transpose(this.t2);
calculate_l1_Q3569(T1_trans, T2_trans);
calculate_l2_Q9(T2_trans);
}
private void calculate_l1_Q3569(short[][] T1_trans, short[][] T2_trans)
{
// Layer 1
this.l1_Q3 = new short[this.o1][][];
this.l1_Q5 = new short[this.o1][][];
this.l1_Q6 = new short[this.o1][][];
this.l1_Q9 = new short[this.o1][][];
short[][] F2T3;
short[][] temp;
for (int k = 0; k < this.o1; k++)
{
// Q3 = (F1 + F1_trans) * T2 + F2 * T3
F2T3 = cf.multiplyMatrix(this.l1_F2[k], this.t3);
this.l1_Q3[k] = cf.addMatrixTranspose(this.l1_F1[k]);
this.l1_Q3[k] = cf.multiplyMatrix(this.l1_Q3[k], this.t2);
this.l1_Q3[k] = cf.addMatrix(this.l1_Q3[k], F2T3);
// Q5 = UT( T1_trans * (F1 * T1 + F2))
this.l1_Q5[k] = cf.multiplyMatrix(this.l1_F1[k], this.t1);
this.l1_Q5[k] = cf.addMatrix(this.l1_Q5[k], this.l1_F2[k]);
this.l1_Q5[k] = cf.multiplyMatrix(T1_trans, this.l1_Q5[k]);
this.l1_Q5[k] = cf.to_UT(this.l1_Q5[k]);
// Q6 = T1_trans * (F1 + F1_trans) * T2 + T1_trans * F2 * T3 + F2_trans * T2
// = T1_trans * Q3 + F2_trans * T2
temp = cf.multiplyMatrix(cf.transpose(this.l1_F2[k]), this.t2);
this.l1_Q6[k] = cf.multiplyMatrix(T1_trans, this.l1_Q3[k]);
this.l1_Q6[k] = cf.addMatrix(this.l1_Q6[k], temp);
// Q9 = UT( T2_trans * (F1 * T2 + F2 * T3))
temp = cf.multiplyMatrix(this.l1_F1[k], this.t2);
this.l1_Q9[k] = cf.addMatrix(temp, F2T3);
this.l1_Q9[k] = cf.multiplyMatrix(T2_trans, this.l1_Q9[k]);
this.l1_Q9[k] = cf.to_UT(this.l1_Q9[k]);
}
}
private void calculate_l2_Q9(short[][] T2_trans)
{
// Layer 2
this.l2_Q9 = new short[this.o2][][];
short[][] temp;
for (int k = 0; k < this.o2; k++)
{
// Q9 = UT( T2_trans * (F1 * T2 + F2 * T3 + F3) + T3_trans * ( F5 * T3 + F6))
this.l2_Q9[k] = cf.multiplyMatrix(this.l2_F1[k], this.t2);
temp = cf.multiplyMatrix(this.l2_F2[k], this.t3);
this.l2_Q9[k] = cf.addMatrix(this.l2_Q9[k], temp);
this.l2_Q9[k] = cf.addMatrix(this.l2_Q9[k], this.l2_F3[k]);
this.l2_Q9[k] = cf.multiplyMatrix(T2_trans, this.l2_Q9[k]);
temp = cf.multiplyMatrix(this.l2_F5[k], this.t3);
temp = cf.addMatrix(temp, this.l2_F6[k]);
temp = cf.multiplyMatrix(cf.transpose(this.t3), temp);
this.l2_Q9[k] = cf.addMatrix(this.l2_Q9[k], temp);
this.l2_Q9[k] = cf.to_UT(this.l2_Q9[k]);
}
}
private void genKeyMaterial()
{
this.sk_seed = new byte[rainbowParams.getLen_skseed()];
random.nextBytes(sk_seed);
SecureRandom sk_random = new RainbowDRBG(sk_seed, rainbowParams.getHash_algo());
generate_S_and_T(sk_random);
// generating l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6
this.l1_F1 = RainbowUtil.generate_random(sk_random, o1, v1, v1, true);
this.l1_F2 = RainbowUtil.generate_random(sk_random, o1, v1, o1, false);
this.l2_F1 = RainbowUtil.generate_random(sk_random, o2, v1, v1, true);
this.l2_F2 = RainbowUtil.generate_random(sk_random, o2, v1, o1, false);
this.l2_F3 = RainbowUtil.generate_random(sk_random, o2, v1, o2, false);
this.l2_F5 = RainbowUtil.generate_random(sk_random, o2, o1, o1, true);
this.l2_F6 = RainbowUtil.generate_random(sk_random, o2, o1, o2, false);
// calculate the public key
calculate_Q_from_F();
// t4 = t1 * t3 - t2
calculate_t4();
this.l1_Q1 = cf.obfuscate_l1_polys(this.s1, this.l2_Q1, this.l1_Q1);
this.l1_Q2 = cf.obfuscate_l1_polys(this.s1, this.l2_Q2, this.l1_Q2);
this.l1_Q3 = cf.obfuscate_l1_polys(this.s1, this.l2_Q3, this.l1_Q3);
this.l1_Q5 = cf.obfuscate_l1_polys(this.s1, this.l2_Q5, this.l1_Q5);
this.l1_Q6 = cf.obfuscate_l1_polys(this.s1, this.l2_Q6, this.l1_Q6);
this.l1_Q9 = cf.obfuscate_l1_polys(this.s1, this.l2_Q9, this.l1_Q9);
}
private void genPrivateKeyMaterial_cyclic()
{
SecureRandom sk_random = new RainbowDRBG(sk_seed, rainbowParams.getHash_algo());
SecureRandom pk_random = new RainbowDRBG(pk_seed, rainbowParams.getHash_algo());
generate_S_and_T(sk_random);
// t4 = t1 * t3 - t2
calculate_t4();
// generating l1_Q1, l1_Q2, l2_Q1, l2_Q2, l2_Q3, l2_Q5, l2_Q6
generate_B1_and_B2(pk_random);
this.l1_Q1 = cf.obfuscate_l1_polys(this.s1, this.l2_Q1, this.l1_Q1);
this.l1_Q2 = cf.obfuscate_l1_polys(this.s1, this.l2_Q2, this.l1_Q2);
// calculate the rest parts of secret key from Qs and S,T
calculate_F_from_Q();
}
private void genKeyMaterial_cyclic()
{
this.sk_seed = new byte[rainbowParams.getLen_skseed()];
random.nextBytes(sk_seed);
this.pk_seed = new byte[rainbowParams.getLen_pkseed()];
random.nextBytes(pk_seed);
genPrivateKeyMaterial_cyclic();
// calculate the rest parts of public key: l1_Q3, l1_Q5, l1_Q6, l1_Q9, l2_Q9
calculate_Q_from_F_cyclic();
this.l1_Q3 = cf.obfuscate_l1_polys(this.s1, this.l2_Q3, this.l1_Q3);
this.l1_Q5 = cf.obfuscate_l1_polys(this.s1, this.l2_Q5, this.l1_Q5);
this.l1_Q6 = cf.obfuscate_l1_polys(this.s1, this.l2_Q6, this.l1_Q6);
this.l1_Q9 = cf.obfuscate_l1_polys(this.s1, this.l2_Q9, this.l1_Q9);
}
public AsymmetricCipherKeyPair genKeyPairClassical()
{
genKeyMaterial();
RainbowPublicKeyParameters pubKey = new RainbowPublicKeyParameters(this.rainbowParams,
this.l1_Q1, this.l1_Q2, this.l1_Q3, this.l1_Q5, this.l1_Q6, this.l1_Q9,
this.l2_Q1, this.l2_Q2, this.l2_Q3, this.l2_Q5, this.l2_Q6, this.l2_Q9);
RainbowPrivateKeyParameters privKey = new RainbowPrivateKeyParameters(this.rainbowParams,
this.sk_seed, this.s1, this.t1, this.t3, this.t4, this.l1_F1, this.l1_F2,
this.l2_F1, this.l2_F2, this.l2_F3, this.l2_F5, this.l2_F6, pubKey.getEncoded());
return new AsymmetricCipherKeyPair(pubKey, privKey);
}
public AsymmetricCipherKeyPair genKeyPairCircumzenithal()
{
genKeyMaterial_cyclic();
RainbowPublicKeyParameters pubKey = new RainbowPublicKeyParameters(this.rainbowParams,
this.pk_seed, this.l1_Q3, this.l1_Q5, this.l1_Q6, this.l1_Q9, this.l2_Q9);
RainbowPrivateKeyParameters privKey = new RainbowPrivateKeyParameters(this.rainbowParams,
this.sk_seed, this.s1, this.t1, this.t3, this.t4, this.l1_F1, this.l1_F2,
this.l2_F1, this.l2_F2, this.l2_F3, this.l2_F5, this.l2_F6, pubKey. getEncoded());
return new AsymmetricCipherKeyPair(pubKey, privKey);
}
public AsymmetricCipherKeyPair genKeyPairCompressed()
{
genKeyMaterial_cyclic();
RainbowPublicKeyParameters pubKey = new RainbowPublicKeyParameters(this.rainbowParams,
this.pk_seed, this.l1_Q3, this.l1_Q5, this.l1_Q6, this.l1_Q9, this.l2_Q9);
RainbowPrivateKeyParameters privKey = new RainbowPrivateKeyParameters(this.rainbowParams,
this.pk_seed, this.sk_seed, pubKey.getEncoded());
return new AsymmetricCipherKeyPair(pubKey, privKey);
}
RainbowPrivateKeyParameters generatePrivateKey()
{
this.sk_seed = Arrays.clone(sk_seed);
this.pk_seed = Arrays.clone(pk_seed);
genPrivateKeyMaterial_cyclic();
return new RainbowPrivateKeyParameters(this.rainbowParams,
this.sk_seed, this.s1, this.t1, this.t3, this.t4, this.l1_F1, this.l1_F2,
this.l2_F1, this.l2_F2, this.l2_F3, this.l2_F5, this.l2_F6, null);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy