org.bouncycastle.pqc.crypto.saber.SABEREngine Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-debug-jdk15to18 Show documentation
Show all versions of bcprov-debug-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.
The newest version!
package org.bouncycastle.pqc.crypto.saber;
import java.security.SecureRandom;
import org.bouncycastle.crypto.Xof;
import org.bouncycastle.crypto.digests.SHA3Digest;
import org.bouncycastle.crypto.digests.SHAKEDigest;
import org.bouncycastle.util.Arrays;
class SABEREngine
{
// constant parameters
public static final int SABER_EP = 10;
public static final int SABER_N = 256;
private static final int SABER_SEEDBYTES = 32;
private static final int SABER_NOISE_SEEDBYTES = 32;
private static final int SABER_KEYBYTES = 32;
private static final int SABER_HASHBYTES = 32;
// parameters for SABER{n}
private final int SABER_L;
private final int SABER_MU;
private final int SABER_ET;
private final int SABER_POLYCOINBYTES;
private final int SABER_EQ;
private final int SABER_POLYBYTES;
private final int SABER_POLYVECBYTES;
private final int SABER_POLYCOMPRESSEDBYTES;
private final int SABER_POLYVECCOMPRESSEDBYTES;
private final int SABER_SCALEBYTES_KEM;
private final int SABER_INDCPA_PUBLICKEYBYTES;
private final int SABER_INDCPA_SECRETKEYBYTES;
private final int SABER_PUBLICKEYBYTES;
private final int SABER_SECRETKEYBYTES;
private final int SABER_BYTES_CCA_DEC;
private final int defaultKeySize;
//
private final int h1;
private final int h2;
private final Utils utils;
private final Poly poly;
public int getSABER_N()
{
return SABER_N;
}
public int getSABER_EP()
{
return SABER_EP;
}
public int getSABER_KEYBYTES()
{
return SABER_KEYBYTES;
}
public int getSABER_L()
{
return SABER_L;
}
public int getSABER_ET()
{
return SABER_ET;
}
public int getSABER_POLYBYTES()
{
return SABER_POLYBYTES;
}
public int getSABER_POLYVECBYTES()
{
return SABER_POLYVECBYTES;
}
public int getSABER_SEEDBYTES()
{
return SABER_SEEDBYTES;
}
public int getSABER_POLYCOINBYTES()
{
return SABER_POLYCOINBYTES;
}
public int getSABER_NOISE_SEEDBYTES()
{
return SABER_NOISE_SEEDBYTES;
}
public int getSABER_MU()
{
return SABER_MU;
}
public Utils getUtils()
{
return utils;
}
public int getSessionKeySize()
{
return defaultKeySize / 8;
}
public int getCipherTextSize()
{
return SABER_BYTES_CCA_DEC;
}
public int getPublicKeySize()
{
return SABER_PUBLICKEYBYTES;
}
public int getPrivateKeySize()
{
return SABER_SECRETKEYBYTES;
}
private final boolean usingAES;
protected final boolean usingEffectiveMasking;
protected final Symmetric symmetric;
public SABEREngine(int l, int defaultKeySize, boolean usingAES, boolean usingEffectiveMasking)
{
this.defaultKeySize = defaultKeySize;
this.usingAES = usingAES;
this.usingEffectiveMasking = usingEffectiveMasking;
this.SABER_L = l;
if (l == 2)
{
this.SABER_MU = 10;
this.SABER_ET = 3;
}
else if(l == 3)
{
this.SABER_MU = 8;
this.SABER_ET = 4;
}
else // l == 4
{
this.SABER_MU = 6;
this.SABER_ET = 6;
}
if(usingAES)
{
symmetric = new Symmetric.AesSymmetric();
}
else
{
symmetric = new Symmetric.ShakeSymmetric();
}
if(usingEffectiveMasking)
{
this.SABER_EQ = 12;
this.SABER_POLYCOINBYTES = (2 * SABER_N / 8);
}
else
{
this.SABER_EQ = 13;
this.SABER_POLYCOINBYTES = (SABER_MU * SABER_N / 8);
}
this.SABER_POLYBYTES = (SABER_EQ * SABER_N / 8);
this.SABER_POLYVECBYTES = (SABER_L * SABER_POLYBYTES);
this.SABER_POLYCOMPRESSEDBYTES = (SABER_EP * SABER_N / 8);
this.SABER_POLYVECCOMPRESSEDBYTES = (SABER_L * SABER_POLYCOMPRESSEDBYTES);
this.SABER_SCALEBYTES_KEM = (SABER_ET * SABER_N / 8);
this.SABER_INDCPA_PUBLICKEYBYTES = (SABER_POLYVECCOMPRESSEDBYTES + SABER_SEEDBYTES);
this.SABER_INDCPA_SECRETKEYBYTES = (SABER_POLYVECBYTES);
this.SABER_PUBLICKEYBYTES = (SABER_INDCPA_PUBLICKEYBYTES);
this.SABER_SECRETKEYBYTES = (SABER_INDCPA_SECRETKEYBYTES + SABER_INDCPA_PUBLICKEYBYTES + SABER_HASHBYTES + SABER_KEYBYTES);
this.SABER_BYTES_CCA_DEC = (SABER_POLYVECCOMPRESSEDBYTES + SABER_SCALEBYTES_KEM);
this.h1 = (1 << (SABER_EQ - SABER_EP - 1));
this.h2 = ((1 << (SABER_EP - 2)) - (1 << (SABER_EP - SABER_ET - 1)) + (1 << (SABER_EQ - SABER_EP - 1)));
utils = new Utils(this);
poly = new Poly(this);
}
private void indcpa_kem_keypair(byte[] pk, byte[] sk, SecureRandom random)
{
short[][][] A = new short[SABER_L][SABER_L][SABER_N];
short[][] s = new short[SABER_L][SABER_N];
short[][] b = new short[SABER_L][SABER_N];
byte[] seed_A = new byte[SABER_SEEDBYTES];
byte[] seed_s = new byte[SABER_NOISE_SEEDBYTES];
int i, j;
random.nextBytes(seed_A);
symmetric.prf(seed_A, seed_A, SABER_SEEDBYTES, SABER_SEEDBYTES);
random.nextBytes(seed_s);
poly.GenMatrix(A, seed_A);
poly.GenSecret(s, seed_s);
poly.MatrixVectorMul(A, s, b, 1);
for (i = 0; i < SABER_L; i++)
{
for (j = 0; j < SABER_N; j++)
{
b[i][j] = (short) (((b[i][j] + h1)&0xffff) >>> (SABER_EQ - SABER_EP));
}
}
utils.POLVECq2BS(sk, s);
utils.POLVECp2BS(pk, b);
System.arraycopy(seed_A, 0, pk, SABER_POLYVECCOMPRESSEDBYTES, seed_A.length);
}
public int crypto_kem_keypair(byte[] pk, byte[]sk, SecureRandom random)
{
int i;
indcpa_kem_keypair(pk, sk, random); // sk[0:SABER_INDCPA_SECRETKEYBYTES-1] <-- sk
for (i = 0; i < SABER_INDCPA_PUBLICKEYBYTES; i++)
{
sk[i + SABER_INDCPA_SECRETKEYBYTES] = pk[i]; // sk[SABER_INDCPA_SECRETKEYBYTES:SABER_INDCPA_SECRETKEYBYTES+SABER_INDCPA_SECRETKEYBYTES-1] <-- pk
}
// Then hash(pk) is appended.
symmetric.hash_h(sk, pk, SABER_SECRETKEYBYTES - 64);
// Remaining part of sk contains a pseudo-random number.
byte[] nonce = new byte[SABER_KEYBYTES];
random.nextBytes(nonce);
System.arraycopy(nonce, 0, sk, SABER_SECRETKEYBYTES - SABER_KEYBYTES, nonce.length);
// This is output when check in crypto_kem_dec() fails.
return 0;
}
private void indcpa_kem_enc(byte[] m, byte[] seed_sp, byte[] pk, byte[] ciphertext)
{
short[][][] A = new short[SABER_L][SABER_L][SABER_N];
short[][] sp = new short[SABER_L][SABER_N];
short[][] bp = new short[SABER_L][SABER_N];
short[][] b = new short[SABER_L][SABER_N];
short[] mp = new short[SABER_N];
short[] vp = new short[SABER_N];
int i, j;
byte[] seed_A = Arrays.copyOfRange(pk, SABER_POLYVECCOMPRESSEDBYTES, pk.length);
poly.GenMatrix(A, seed_A);
poly.GenSecret(sp, seed_sp);
poly.MatrixVectorMul(A, sp, bp, 0);
for (i = 0; i < SABER_L; i++)
{
for (j = 0; j < SABER_N; j++)
{
bp[i][j] = (short) (((bp[i][j] + h1)&0xffff) >>> (SABER_EQ - SABER_EP));
}
}
utils.POLVECp2BS(ciphertext, bp);
utils.BS2POLVECp(pk, b);
poly.InnerProd(b, sp, vp);
utils.BS2POLmsg(m, mp);
for (j = 0; j < SABER_N; j++)
{
vp[j] = (short) (((vp[j] - (mp[j] << (SABER_EP - 1)) + h1)&0xffff) >>> (SABER_EP - SABER_ET));
}
utils.POLT2BS(ciphertext, SABER_POLYVECCOMPRESSEDBYTES, vp);
}
public int crypto_kem_enc(byte[] c, byte[] k, byte[] pk, SecureRandom random)
{
byte[] kr = new byte[64]; // Will contain key, coins
byte[] buf = new byte[64];
byte[] nonce = new byte[32];
random.nextBytes(nonce);
// BUF[0:31] <-- random message (will be used as the key for client) Note: hash doesnot release system RNG output
symmetric.hash_h(nonce, nonce, 0);
System.arraycopy(nonce, 0, buf, 0, 32);
// BUF[32:63] <-- Hash(public key); Multitarget countermeasure for coins + contributory KEM
symmetric.hash_h(buf, pk, 32);
// kr[0:63] <-- Hash(buf[0:63]);
symmetric.hash_g(kr, buf);
// K^ <-- kr[0:31]
// noiseseed (r) <-- kr[32:63];
// buf[0:31] contains message; kr[32:63] contains randomness r;
indcpa_kem_enc(buf, Arrays.copyOfRange(kr, 32, kr.length), pk, c);
symmetric.hash_h(kr, c, 32);
// hash concatenation of pre-k and h(c) to k
//todo support 128 and 192 bit keys
byte[] temp_k = new byte[32];
symmetric.hash_h(temp_k, kr, 0);
System.arraycopy(temp_k,0, k, 0, defaultKeySize/8);
return 0;
}
private void indcpa_kem_dec(byte[] sk, byte[] ciphertext, byte[] m)
{
short[][] s = new short[SABER_L][SABER_N];
short[][] b = new short[SABER_L][SABER_N];
short[] v = new short[SABER_N];
short[] cm = new short[SABER_N];
int i;
utils.BS2POLVECq(sk,0, s);
utils.BS2POLVECp(ciphertext, b);
poly.InnerProd(b, s, v);
utils.BS2POLT(ciphertext, SABER_POLYVECCOMPRESSEDBYTES, cm);
for (i = 0; i < SABER_N; i++)
{
v[i] = (short) (((v[i] + h2 - (cm[i] << (SABER_EP - SABER_ET)))&0xffff) >> (SABER_EP - 1));
}
utils.POLmsg2BS(m, v);
}
public int crypto_kem_dec(byte[] k, byte[] c, byte[] sk)
{
int i, fail;
byte[] cmp = new byte[SABER_BYTES_CCA_DEC];
byte[] buf = new byte[64];
byte[] kr = new byte[64]; // Will contain key, coins
byte[] pk = Arrays.copyOfRange(sk, SABER_INDCPA_SECRETKEYBYTES, sk.length);
indcpa_kem_dec(sk, c, buf); // buf[0:31] <-- message
// Multitarget countermeasure for coins + contributory KEM
for (i = 0; i < 32; i++) // Save hash by storing h(pk) in sk
{
buf[32 + i] = sk[SABER_SECRETKEYBYTES - 64 + i];
}
symmetric.hash_g(kr, buf);
indcpa_kem_enc(buf, Arrays.copyOfRange(kr, 32, kr.length), pk, cmp);
fail = verify(c, cmp, SABER_BYTES_CCA_DEC);
// overwrite coins in kr with h(c)
symmetric.hash_h(kr, c, 32);
cmov(kr, sk, SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES, (byte) fail);
// hash concatenation of pre-k and h(c) to k
//todo support 128 and 192 bit keys
byte[] temp_k = new byte[32];
symmetric.hash_h(temp_k, kr, 0);
System.arraycopy(temp_k,0, k, 0, defaultKeySize/8);
return 0;
}
/* returns 0 for equal strings, 1 for non-equal strings */
static int verify(byte[] a, byte[] b, int len)
{
long r;
int i;
r = 0;
for (i = 0; i < len; i++)
r |= a[i] ^ b[i];
r = (-r) >>> 63;
return (int) r;
}
/* b = 1 means mov, b = 0 means don't mov*/
static void cmov(byte[] r, byte[] x, int x_offset, int len, byte b)
{
int i;
b = (byte) -b;
for (i = 0; i < len; i++)
r[i] ^= b & (x[i + x_offset] ^ r[i]);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy