All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.macs.CMac Maven / Gradle / Ivy

package org.bouncycastle.crypto.macs;

import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.Mac;
import org.bouncycastle.crypto.modes.CBCBlockCipher;
import org.bouncycastle.crypto.paddings.ISO7816d4Padding;
import org.bouncycastle.crypto.params.KeyParameter;
import org.bouncycastle.util.Pack;

/**
 * CMAC - as specified at www.nuee.nagoya-u.ac.jp/labs/tiwata/omac/omac.html
 * 

* CMAC is analogous to OMAC1 - see also en.wikipedia.org/wiki/CMAC *

* CMAC is a NIST recomendation - see * csrc.nist.gov/CryptoToolkit/modes/800-38_Series_Publications/SP800-38B.pdf *

* CMAC/OMAC1 is a blockcipher-based message authentication code designed and * analyzed by Tetsu Iwata and Kaoru Kurosawa. *

* CMAC/OMAC1 is a simple variant of the CBC MAC (Cipher Block Chaining Message * Authentication Code). OMAC stands for One-Key CBC MAC. *

* It supports 128- or 64-bits block ciphers, with any key size, and returns * a MAC with dimension less or equal to the block size of the underlying * cipher. *

*/ public class CMac implements Mac { private byte[] poly; private byte[] ZEROES; private byte[] mac; private byte[] buf; private int bufOff; private BlockCipher cipher; private int macSize; private byte[] Lu, Lu2; /** * create a standard MAC based on a CBC block cipher (64 or 128 bit block). * This will produce an authentication code the length of the block size * of the cipher. * * @param cipher the cipher to be used as the basis of the MAC generation. */ public CMac(BlockCipher cipher) { this(cipher, cipher.getBlockSize() * 8); } /** * create a standard MAC based on a block cipher with the size of the * MAC been given in bits. *

* Note: the size of the MAC must be at least 24 bits (FIPS Publication 81), * or 16 bits if being used as a data authenticator (FIPS Publication 113), * and in general should be less than the size of the block cipher as it reduces * the chance of an exhaustive attack (see Handbook of Applied Cryptography). * * @param cipher the cipher to be used as the basis of the MAC generation. * @param macSizeInBits the size of the MAC in bits, must be a multiple of 8 and <= 128. */ public CMac(BlockCipher cipher, int macSizeInBits) { if ((macSizeInBits % 8) != 0) { throw new IllegalArgumentException("MAC size must be multiple of 8"); } if (macSizeInBits > (cipher.getBlockSize() * 8)) { throw new IllegalArgumentException( "MAC size must be less or equal to " + (cipher.getBlockSize() * 8)); } this.cipher = new CBCBlockCipher(cipher); this.macSize = macSizeInBits / 8; this.poly = lookupPoly(cipher.getBlockSize()); mac = new byte[cipher.getBlockSize()]; buf = new byte[cipher.getBlockSize()]; ZEROES = new byte[cipher.getBlockSize()]; bufOff = 0; } public String getAlgorithmName() { return cipher.getAlgorithmName(); } private static int shiftLeft(byte[] block, byte[] output) { int i = block.length; int bit = 0; while (--i >= 0) { int b = block[i] & 0xff; output[i] = (byte)((b << 1) | bit); bit = (b >>> 7) & 1; } return bit; } private byte[] doubleLu(byte[] in) { byte[] ret = new byte[in.length]; int carry = shiftLeft(in, ret); /* * NOTE: This construction is an attempt at a constant-time implementation. */ int mask = (-carry) & 0xff; ret[in.length - 3] ^= poly[1] & mask; ret[in.length - 2] ^= poly[2] & mask; ret[in.length - 1] ^= poly[3] & mask; return ret; } private static byte[] lookupPoly(int blockSizeLength) { int xor; switch (blockSizeLength * 8) { case 64: xor = 0x1B; break; case 128: xor = 0x87; break; case 160: xor = 0x2D; break; case 192: xor = 0x87; break; case 224: xor = 0x309; break; case 256: xor = 0x425; break; case 320: xor = 0x1B; break; case 384: xor = 0x100D; break; case 448: xor = 0x851; break; case 512: xor = 0x125; break; case 768: xor = 0xA0011; break; case 1024: xor = 0x80043; break; case 2048: xor = 0x86001; break; default: throw new IllegalArgumentException("Unknown block size for CMAC: " + (blockSizeLength * 8)); } return Pack.intToBigEndian(xor); } public void init(CipherParameters params) { validate(params); cipher.init(true, params); //initializes the L, Lu, Lu2 numbers byte[] L = new byte[ZEROES.length]; cipher.processBlock(ZEROES, 0, L, 0); Lu = doubleLu(L); Lu2 = doubleLu(Lu); reset(); } void validate(CipherParameters params) { if (params != null) { if (!(params instanceof KeyParameter)) { // CMAC mode does not permit IV to underlying CBC mode throw new IllegalArgumentException("CMac mode only permits key to be set."); } } } public int getMacSize() { return macSize; } public void update(byte in) { if (bufOff == buf.length) { cipher.processBlock(buf, 0, mac, 0); bufOff = 0; } buf[bufOff++] = in; } public void update(byte[] in, int inOff, int len) { if (len < 0) { throw new IllegalArgumentException( "Can't have a negative input length!"); } int blockSize = cipher.getBlockSize(); int gapLen = blockSize - bufOff; if (len > gapLen) { System.arraycopy(in, inOff, buf, bufOff, gapLen); cipher.processBlock(buf, 0, mac, 0); bufOff = 0; len -= gapLen; inOff += gapLen; while (len > blockSize) { cipher.processBlock(in, inOff, mac, 0); len -= blockSize; inOff += blockSize; } } System.arraycopy(in, inOff, buf, bufOff, len); bufOff += len; } public int doFinal(byte[] out, int outOff) { int blockSize = cipher.getBlockSize(); byte[] lu; if (bufOff == blockSize) { lu = Lu; } else { new ISO7816d4Padding().addPadding(buf, bufOff); lu = Lu2; } for (int i = 0; i < mac.length; i++) { buf[i] ^= lu[i]; } cipher.processBlock(buf, 0, mac, 0); System.arraycopy(mac, 0, out, outOff, macSize); reset(); return macSize; } /** * Reset the mac generator. */ public void reset() { /* * clean the buffer. */ for (int i = 0; i < buf.length; i++) { buf[i] = 0; } bufOff = 0; /* * reset the underlying cipher. */ cipher.reset(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy