org.bouncycastle.pqc.crypto.mceliece.McElieceFujisakiCipher Maven / Gradle / Ivy
package org.bouncycastle.pqc.crypto.mceliece;
import java.security.SecureRandom;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.Digest;
import org.bouncycastle.crypto.InvalidCipherTextException;
import org.bouncycastle.crypto.digests.SHA1Digest;
import org.bouncycastle.crypto.params.ParametersWithRandom;
import org.bouncycastle.crypto.prng.DigestRandomGenerator;
import org.bouncycastle.pqc.crypto.MessageEncryptor;
import org.bouncycastle.pqc.math.linearalgebra.ByteUtils;
import org.bouncycastle.pqc.math.linearalgebra.GF2Vector;
/**
* This class implements the Fujisaki/Okamoto conversion of the McEliecePKCS.
* Fujisaki and Okamoto propose hybrid encryption that merges a symmetric
* encryption scheme which is secure in the find-guess model with an asymmetric
* one-way encryption scheme which is sufficiently probabilistic to obtain a
* public key cryptosystem which is CCA2-secure. For details, see D. Engelbert,
* R. Overbeck, A. Schmidt, "A summary of the development of the McEliece
* Cryptosystem", technical report.
*/
public class McElieceFujisakiCipher
implements MessageEncryptor
{
/**
* The OID of the algorithm.
*/
public static final String OID = "1.3.6.1.4.1.8301.3.1.3.4.2.1";
private static final String DEFAULT_PRNG_NAME = "SHA1PRNG";
private Digest messDigest;
private SecureRandom sr;
/**
* The McEliece main parameters
*/
private int n, k, t;
McElieceCCA2KeyParameters key;
private boolean forEncryption;
public void init(boolean forEncryption,
CipherParameters param)
{
this.forEncryption = forEncryption;
if (forEncryption)
{
if (param instanceof ParametersWithRandom)
{
ParametersWithRandom rParam = (ParametersWithRandom)param;
this.sr = rParam.getRandom();
this.key = (McElieceCCA2PublicKeyParameters)rParam.getParameters();
this.initCipherEncrypt((McElieceCCA2PublicKeyParameters)key);
}
else
{
this.sr = new SecureRandom();
this.key = (McElieceCCA2PublicKeyParameters)param;
this.initCipherEncrypt((McElieceCCA2PublicKeyParameters)key);
}
}
else
{
this.key = (McElieceCCA2PrivateKeyParameters)param;
this.initCipherDecrypt((McElieceCCA2PrivateKeyParameters)key);
}
}
public int getKeySize(McElieceCCA2KeyParameters key)
throws IllegalArgumentException
{
if (key instanceof McElieceCCA2PublicKeyParameters)
{
return ((McElieceCCA2PublicKeyParameters)key).getN();
}
if (key instanceof McElieceCCA2PrivateKeyParameters)
{
return ((McElieceCCA2PrivateKeyParameters)key).getN();
}
throw new IllegalArgumentException("unsupported type");
}
private void initCipherEncrypt(McElieceCCA2PublicKeyParameters pubKey)
{
this.sr = sr != null ? sr : new SecureRandom();
this.messDigest = Utils.getDigest(pubKey.getDigest());
n = pubKey.getN();
k = pubKey.getK();
t = pubKey.getT();
}
private void initCipherDecrypt(McElieceCCA2PrivateKeyParameters privKey)
{
this.messDigest = Utils.getDigest(privKey.getDigest());
n = privKey.getN();
t = privKey.getT();
}
public byte[] messageEncrypt(byte[] input)
{
if (!forEncryption)
{
throw new IllegalStateException("cipher initialised for decryption");
}
// generate random vector r of length k bits
GF2Vector r = new GF2Vector(k, sr);
// convert r to byte array
byte[] rBytes = r.getEncoded();
// compute (r||input)
byte[] rm = ByteUtils.concatenate(rBytes, input);
// compute H(r||input)
messDigest.update(rm, 0, rm.length);
byte[] hrm = new byte[messDigest.getDigestSize()];
messDigest.doFinal(hrm, 0);
// convert H(r||input) to error vector z
GF2Vector z = Conversions.encode(n, t, hrm);
// compute c1 = E(r, z)
byte[] c1 = McElieceCCA2Primitives.encryptionPrimitive((McElieceCCA2PublicKeyParameters)key, r, z)
.getEncoded();
// get PRNG object
DigestRandomGenerator sr0 = new DigestRandomGenerator(new SHA1Digest());
// seed PRNG with r'
sr0.addSeedMaterial(rBytes);
// generate random c2
byte[] c2 = new byte[input.length];
sr0.nextBytes(c2);
// XOR with input
for (int i = 0; i < input.length; i++)
{
c2[i] ^= input[i];
}
// return (c1||c2)
return ByteUtils.concatenate(c1, c2);
}
public byte[] messageDecrypt(byte[] input)
throws InvalidCipherTextException
{
if (forEncryption)
{
throw new IllegalStateException("cipher initialised for decryption");
}
int c1Len = (n + 7) >> 3;
int c2Len = input.length - c1Len;
// split ciphertext (c1||c2)
byte[][] c1c2 = ByteUtils.split(input, c1Len);
byte[] c1 = c1c2[0];
byte[] c2 = c1c2[1];
// decrypt c1 ...
GF2Vector hrmVec = GF2Vector.OS2VP(n, c1);
GF2Vector[] decC1 = McElieceCCA2Primitives.decryptionPrimitive((McElieceCCA2PrivateKeyParameters)key, hrmVec);
byte[] rBytes = decC1[0].getEncoded();
// ... and obtain error vector z
GF2Vector z = decC1[1];
// get PRNG object
DigestRandomGenerator sr0 = new DigestRandomGenerator(new SHA1Digest());
// seed PRNG with r'
sr0.addSeedMaterial(rBytes);
// generate random sequence
byte[] mBytes = new byte[c2Len];
sr0.nextBytes(mBytes);
// XOR with c2 to obtain m
for (int i = 0; i < c2Len; i++)
{
mBytes[i] ^= c2[i];
}
// compute H(r||m)
byte[] rmBytes = ByteUtils.concatenate(rBytes, mBytes);
byte[] hrm = new byte[messDigest.getDigestSize()];
messDigest.update(rmBytes, 0, rmBytes.length);
messDigest.doFinal(hrm, 0);
// compute Conv(H(r||m))
hrmVec = Conversions.encode(n, t, hrm);
// check that Conv(H(m||r)) = z
if (!hrmVec.equals(z))
{
throw new InvalidCipherTextException("Bad Padding: invalid ciphertext");
}
// return plaintext m
return mBytes;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy