All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.tls.TlsECCUtils Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8 with debug enabled.

There is a newer version: 1.70
Show newest version
package org.bouncycastle.crypto.tls;

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.math.BigInteger;
import java.security.SecureRandom;
import java.util.Hashtable;

import org.bouncycastle.asn1.x9.ECNamedCurveTable;
import org.bouncycastle.asn1.x9.X9ECParameters;
import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
import org.bouncycastle.crypto.agreement.ECDHBasicAgreement;
import org.bouncycastle.crypto.ec.CustomNamedCurves;
import org.bouncycastle.crypto.generators.ECKeyPairGenerator;
import org.bouncycastle.crypto.params.ECDomainParameters;
import org.bouncycastle.crypto.params.ECKeyGenerationParameters;
import org.bouncycastle.crypto.params.ECPrivateKeyParameters;
import org.bouncycastle.crypto.params.ECPublicKeyParameters;
import org.bouncycastle.math.ec.ECAlgorithms;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.field.PolynomialExtensionField;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.BigIntegers;
import org.bouncycastle.util.Integers;

public class TlsECCUtils
{
    public static final Integer EXT_elliptic_curves = Integers.valueOf(ExtensionType.elliptic_curves);
    public static final Integer EXT_ec_point_formats = Integers.valueOf(ExtensionType.ec_point_formats);

    private static final String[] CURVE_NAMES = new String[] { "sect163k1", "sect163r1", "sect163r2", "sect193r1",
        "sect193r2", "sect233k1", "sect233r1", "sect239k1", "sect283k1", "sect283r1", "sect409k1", "sect409r1",
        "sect571k1", "sect571r1", "secp160k1", "secp160r1", "secp160r2", "secp192k1", "secp192r1", "secp224k1",
        "secp224r1", "secp256k1", "secp256r1", "secp384r1", "secp521r1",
        "brainpoolP256r1", "brainpoolP384r1", "brainpoolP512r1"};

    public static void addSupportedEllipticCurvesExtension(Hashtable extensions, int[] namedCurves) throws IOException
    {
        extensions.put(EXT_elliptic_curves, createSupportedEllipticCurvesExtension(namedCurves));
    }

    public static void addSupportedPointFormatsExtension(Hashtable extensions, short[] ecPointFormats)
        throws IOException
    {
        extensions.put(EXT_ec_point_formats, createSupportedPointFormatsExtension(ecPointFormats));
    }

    public static int[] getSupportedEllipticCurvesExtension(Hashtable extensions) throws IOException
    {
        byte[] extensionData = TlsUtils.getExtensionData(extensions, EXT_elliptic_curves);
        return extensionData == null ? null : readSupportedEllipticCurvesExtension(extensionData);
    }

    public static short[] getSupportedPointFormatsExtension(Hashtable extensions) throws IOException
    {
        byte[] extensionData = TlsUtils.getExtensionData(extensions, EXT_ec_point_formats);
        return extensionData == null ? null : readSupportedPointFormatsExtension(extensionData);
    }

    public static byte[] createSupportedEllipticCurvesExtension(int[] namedCurves) throws IOException
    {
        if (namedCurves == null || namedCurves.length < 1)
        {
            throw new TlsFatalAlert(AlertDescription.internal_error);
        }

        return TlsUtils.encodeUint16ArrayWithUint16Length(namedCurves);
    }

    public static byte[] createSupportedPointFormatsExtension(short[] ecPointFormats) throws IOException
    {
        if (ecPointFormats == null || !Arrays.contains(ecPointFormats, ECPointFormat.uncompressed))
        {
            /*
             * RFC 4492 5.1. If the Supported Point Formats Extension is indeed sent, it MUST
             * contain the value 0 (uncompressed) as one of the items in the list of point formats.
             */

            // NOTE: We add it at the end (lowest preference)
            ecPointFormats = Arrays.append(ecPointFormats, ECPointFormat.uncompressed);
        }

        return TlsUtils.encodeUint8ArrayWithUint8Length(ecPointFormats);
    }

    public static int[] readSupportedEllipticCurvesExtension(byte[] extensionData) throws IOException
    {
        if (extensionData == null)
        {
            throw new IllegalArgumentException("'extensionData' cannot be null");
        }

        ByteArrayInputStream buf = new ByteArrayInputStream(extensionData);

        int length = TlsUtils.readUint16(buf);
        if (length < 2 || (length & 1) != 0)
        {
            throw new TlsFatalAlert(AlertDescription.decode_error);
        }

        int[] namedCurves = TlsUtils.readUint16Array(length / 2, buf);

        TlsProtocol.assertEmpty(buf);

        return namedCurves;
    }

    public static short[] readSupportedPointFormatsExtension(byte[] extensionData) throws IOException
    {
        if (extensionData == null)
        {
            throw new IllegalArgumentException("'extensionData' cannot be null");
        }

        ByteArrayInputStream buf = new ByteArrayInputStream(extensionData);

        short length = TlsUtils.readUint8(buf);
        if (length < 1)
        {
            throw new TlsFatalAlert(AlertDescription.decode_error);
        }

        short[] ecPointFormats = TlsUtils.readUint8Array(length, buf);

        TlsProtocol.assertEmpty(buf);

        if (!Arrays.contains(ecPointFormats, ECPointFormat.uncompressed))
        {
            /*
             * RFC 4492 5.1. If the Supported Point Formats Extension is indeed sent, it MUST
             * contain the value 0 (uncompressed) as one of the items in the list of point formats.
             */
            throw new TlsFatalAlert(AlertDescription.illegal_parameter);
        }

        return ecPointFormats;
    }

    public static String getNameOfNamedCurve(int namedCurve)
    {
        return isSupportedNamedCurve(namedCurve) ? CURVE_NAMES[namedCurve - 1] : null;
    }

    public static ECDomainParameters getParametersForNamedCurve(int namedCurve)
    {
        String curveName = getNameOfNamedCurve(namedCurve);
        if (curveName == null)
        {
            return null;
        }

        // Parameters are lazily created the first time a particular curve is accessed

        X9ECParameters ecP = CustomNamedCurves.getByName(curveName);
        if (ecP == null)
        {
            ecP = ECNamedCurveTable.getByName(curveName);
            if (ecP == null)
            {
                return null;
            }
        }

        // It's a bit inefficient to do this conversion every time
        return new ECDomainParameters(ecP.getCurve(), ecP.getG(), ecP.getN(), ecP.getH(), ecP.getSeed());
    }

    public static boolean hasAnySupportedNamedCurves()
    {
        return CURVE_NAMES.length > 0;
    }

    public static boolean containsECCCipherSuites(int[] cipherSuites)
    {
        for (int i = 0; i < cipherSuites.length; ++i)
        {
            if (isECCCipherSuite(cipherSuites[i]))
            {
                return true;
            }
        }
        return false;
    }

    public static boolean isECCCipherSuite(int cipherSuite)
    {
        switch (cipherSuite)
        {
        /*
         * RFC 4492
         */
        case CipherSuite.TLS_ECDH_ECDSA_WITH_NULL_SHA:
        case CipherSuite.TLS_ECDH_ECDSA_WITH_RC4_128_SHA:
        case CipherSuite.TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA:
        case CipherSuite.TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA:
        case CipherSuite.TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA:
        case CipherSuite.TLS_ECDHE_ECDSA_WITH_NULL_SHA:
        case CipherSuite.TLS_ECDHE_ECDSA_WITH_RC4_128_SHA:
        case CipherSuite.TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA:
        case CipherSuite.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA:
        case CipherSuite.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA:
        case CipherSuite.TLS_ECDH_RSA_WITH_NULL_SHA:
        case CipherSuite.TLS_ECDH_RSA_WITH_RC4_128_SHA:
        case CipherSuite.TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA:
        case CipherSuite.TLS_ECDH_RSA_WITH_AES_128_CBC_SHA:
        case CipherSuite.TLS_ECDH_RSA_WITH_AES_256_CBC_SHA:
        case CipherSuite.TLS_ECDHE_RSA_WITH_NULL_SHA:
        case CipherSuite.TLS_ECDHE_RSA_WITH_RC4_128_SHA:
        case CipherSuite.TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA:
        case CipherSuite.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA:
        case CipherSuite.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA:
        case CipherSuite.TLS_ECDH_anon_WITH_NULL_SHA:
        case CipherSuite.TLS_ECDH_anon_WITH_RC4_128_SHA:
        case CipherSuite.TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA:
        case CipherSuite.TLS_ECDH_anon_WITH_AES_128_CBC_SHA:
        case CipherSuite.TLS_ECDH_anon_WITH_AES_256_CBC_SHA:

        /*
         * RFC 5289
         */
        case CipherSuite.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256:
        case CipherSuite.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384:
        case CipherSuite.TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256:
        case CipherSuite.TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384:
        case CipherSuite.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256:
        case CipherSuite.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384:
        case CipherSuite.TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256:
        case CipherSuite.TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384:
        case CipherSuite.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:
        case CipherSuite.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384:
        case CipherSuite.TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256:
        case CipherSuite.TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384:
        case CipherSuite.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256:
        case CipherSuite.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384:
        case CipherSuite.TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256:
        case CipherSuite.TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384:

        /*
         * RFC 5489
         */
        case CipherSuite.TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA:
        case CipherSuite.TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA:
        case CipherSuite.TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256:
        case CipherSuite.TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA:
        case CipherSuite.TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384:
        case CipherSuite.TLS_ECDHE_PSK_WITH_NULL_SHA:
        case CipherSuite.TLS_ECDHE_PSK_WITH_NULL_SHA256:
        case CipherSuite.TLS_ECDHE_PSK_WITH_NULL_SHA384:
        case CipherSuite.TLS_ECDHE_PSK_WITH_RC4_128_SHA:

        /*
         * RFC 6367
         */
        case CipherSuite.TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256:
        case CipherSuite.TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384:
        case CipherSuite.TLS_ECDH_ECDSA_WITH_CAMELLIA_128_CBC_SHA256:
        case CipherSuite.TLS_ECDH_ECDSA_WITH_CAMELLIA_256_CBC_SHA384:
        case CipherSuite.TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256:
        case CipherSuite.TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384:
        case CipherSuite.TLS_ECDH_RSA_WITH_CAMELLIA_128_CBC_SHA256:
        case CipherSuite.TLS_ECDH_RSA_WITH_CAMELLIA_256_CBC_SHA384:

        case CipherSuite.TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256:
        case CipherSuite.TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_GCM_SHA384:
        case CipherSuite.TLS_ECDH_ECDSA_WITH_CAMELLIA_128_GCM_SHA256:
        case CipherSuite.TLS_ECDH_ECDSA_WITH_CAMELLIA_256_GCM_SHA384:
        case CipherSuite.TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256:
        case CipherSuite.TLS_ECDHE_RSA_WITH_CAMELLIA_256_GCM_SHA384:
        case CipherSuite.TLS_ECDH_RSA_WITH_CAMELLIA_128_GCM_SHA256:
        case CipherSuite.TLS_ECDH_RSA_WITH_CAMELLIA_256_GCM_SHA384:

        case CipherSuite.TLS_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256:
        case CipherSuite.TLS_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384:

        /*
         * RFC 7251
         */
        case CipherSuite.TLS_ECDHE_ECDSA_WITH_AES_128_CCM:
        case CipherSuite.TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8:
        case CipherSuite.TLS_ECDHE_ECDSA_WITH_AES_256_CCM:
        case CipherSuite.TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8:

        /*
         * draft-ietf-tls-chacha20-poly1305-04
         */
        case CipherSuite.DRAFT_TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256:
        case CipherSuite.DRAFT_TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256:
        case CipherSuite.DRAFT_TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256:

        /*
         * draft-zauner-tls-aes-ocb-04
         */
        case CipherSuite.DRAFT_TLS_ECDHE_RSA_WITH_AES_128_OCB:
        case CipherSuite.DRAFT_TLS_ECDHE_RSA_WITH_AES_256_OCB:
        case CipherSuite.DRAFT_TLS_ECDHE_ECDSA_WITH_AES_128_OCB:
        case CipherSuite.DRAFT_TLS_ECDHE_ECDSA_WITH_AES_256_OCB:
        case CipherSuite.DRAFT_TLS_ECDHE_PSK_WITH_AES_128_OCB:
        case CipherSuite.DRAFT_TLS_ECDHE_PSK_WITH_AES_256_OCB:

            return true;

        default:
            return false;
        }
    }

    public static boolean areOnSameCurve(ECDomainParameters a, ECDomainParameters b)
    {
        return a != null && a.equals(b);
    }

    public static boolean isSupportedNamedCurve(int namedCurve)
    {
        return (namedCurve > 0 && namedCurve <= CURVE_NAMES.length);
    }

    public static boolean isCompressionPreferred(short[] ecPointFormats, short compressionFormat)
    {
        if (ecPointFormats == null)
        {
            return false;
        }
        for (int i = 0; i < ecPointFormats.length; ++i)
        {
            short ecPointFormat = ecPointFormats[i];
            if (ecPointFormat == ECPointFormat.uncompressed)
            {
                return false;
            }
            if (ecPointFormat == compressionFormat)
            {
                return true;
            }
        }
        return false;
    }

    public static byte[] serializeECFieldElement(int fieldSize, BigInteger x) throws IOException
    {
        return BigIntegers.asUnsignedByteArray((fieldSize + 7) / 8, x);
    }

    public static byte[] serializeECPoint(short[] ecPointFormats, ECPoint point) throws IOException
    {
        ECCurve curve = point.getCurve();

        /*
         * RFC 4492 5.7. ...an elliptic curve point in uncompressed or compressed format. Here, the
         * format MUST conform to what the server has requested through a Supported Point Formats
         * Extension if this extension was used, and MUST be uncompressed if this extension was not
         * used.
         */
        boolean compressed = false;
        if (ECAlgorithms.isFpCurve(curve))
        {
            compressed = isCompressionPreferred(ecPointFormats, ECPointFormat.ansiX962_compressed_prime);
        }
        else if (ECAlgorithms.isF2mCurve(curve))
        {
            compressed = isCompressionPreferred(ecPointFormats, ECPointFormat.ansiX962_compressed_char2);
        }
        return point.getEncoded(compressed);
    }

    public static byte[] serializeECPublicKey(short[] ecPointFormats, ECPublicKeyParameters keyParameters)
        throws IOException
    {
        return serializeECPoint(ecPointFormats, keyParameters.getQ());
    }

    public static BigInteger deserializeECFieldElement(int fieldSize, byte[] encoding) throws IOException
    {
        int requiredLength = (fieldSize + 7) / 8;
        if (encoding.length != requiredLength)
        {
            throw new TlsFatalAlert(AlertDescription.decode_error);
        }
        return new BigInteger(1, encoding);
    }

    public static ECPoint deserializeECPoint(short[] ecPointFormats, ECCurve curve, byte[] encoding) throws IOException
    {
        if (encoding == null || encoding.length < 1)
        {
            throw new TlsFatalAlert(AlertDescription.illegal_parameter);
        }

        short actualFormat;
        switch (encoding[0])
        {
        case 0x02: // compressed
        case 0x03: // compressed
        {
            if (ECAlgorithms.isF2mCurve(curve))
            {
                actualFormat = ECPointFormat.ansiX962_compressed_char2;
            }
            else if (ECAlgorithms.isFpCurve(curve))
            {
                actualFormat = ECPointFormat.ansiX962_compressed_prime;
            }
            else
            {
                throw new TlsFatalAlert(AlertDescription.illegal_parameter);
            }
            break;
        }
        case 0x04: // uncompressed
        {
            actualFormat = ECPointFormat.uncompressed;
            break;
        }
        case 0x00: // infinity
        case 0x06: // hybrid
        case 0x07: // hybrid
        default:
            throw new TlsFatalAlert(AlertDescription.illegal_parameter);
        }

        if (actualFormat != ECPointFormat.uncompressed
            && (ecPointFormats == null || !Arrays.contains(ecPointFormats, actualFormat)))
        {
            throw new TlsFatalAlert(AlertDescription.illegal_parameter);
        }

        return curve.decodePoint(encoding);
    }

    public static ECPublicKeyParameters deserializeECPublicKey(short[] ecPointFormats, ECDomainParameters curve_params,
        byte[] encoding) throws IOException
    {
        try
        {
            ECPoint Y = deserializeECPoint(ecPointFormats, curve_params.getCurve(), encoding);
            return new ECPublicKeyParameters(Y, curve_params);
        }
        catch (RuntimeException e)
        {
            throw new TlsFatalAlert(AlertDescription.illegal_parameter, e);
        }
    }

    public static byte[] calculateECDHBasicAgreement(ECPublicKeyParameters publicKey, ECPrivateKeyParameters privateKey)
    {
        ECDHBasicAgreement basicAgreement = new ECDHBasicAgreement();
        basicAgreement.init(privateKey);
        BigInteger agreementValue = basicAgreement.calculateAgreement(publicKey);

        /*
         * RFC 4492 5.10. Note that this octet string (Z in IEEE 1363 terminology) as output by
         * FE2OSP, the Field Element to Octet String Conversion Primitive, has constant length for
         * any given field; leading zeros found in this octet string MUST NOT be truncated.
         */
        return BigIntegers.asUnsignedByteArray(basicAgreement.getFieldSize(), agreementValue);
    }

    public static AsymmetricCipherKeyPair generateECKeyPair(SecureRandom random, ECDomainParameters ecParams)
    {
        ECKeyPairGenerator keyPairGenerator = new ECKeyPairGenerator();
        keyPairGenerator.init(new ECKeyGenerationParameters(ecParams, random));
        return keyPairGenerator.generateKeyPair();
    }

    public static ECPrivateKeyParameters generateEphemeralClientKeyExchange(SecureRandom random, short[] ecPointFormats,
        ECDomainParameters ecParams, OutputStream output) throws IOException
    {
        AsymmetricCipherKeyPair kp = generateECKeyPair(random, ecParams);

        ECPublicKeyParameters ecPublicKey = (ECPublicKeyParameters) kp.getPublic();
        writeECPoint(ecPointFormats, ecPublicKey.getQ(), output);

        return (ECPrivateKeyParameters) kp.getPrivate();
    }

    // TODO Refactor around ServerECDHParams before making this public
    static ECPrivateKeyParameters generateEphemeralServerKeyExchange(SecureRandom random, int[] namedCurves,
        short[] ecPointFormats, OutputStream output) throws IOException
    {
        /* First we try to find a supported named curve from the client's list. */
        int namedCurve = -1;
        if (namedCurves == null)
        {
            // TODO Let the peer choose the default named curve
            namedCurve = NamedCurve.secp256r1;
        }
        else
        {
            for (int i = 0; i < namedCurves.length; ++i)
            {
                int entry = namedCurves[i];
                if (NamedCurve.isValid(entry) && isSupportedNamedCurve(entry))
                {
                    namedCurve = entry;
                    break;
                }
            }
        }

        ECDomainParameters ecParams = null;
        if (namedCurve >= 0)
        {
            ecParams = getParametersForNamedCurve(namedCurve);
        }
        else
        {
            /* If no named curves are suitable, check if the client supports explicit curves. */
            if (Arrays.contains(namedCurves, NamedCurve.arbitrary_explicit_prime_curves))
            {
                ecParams = getParametersForNamedCurve(NamedCurve.secp256r1);
            }
            else if (Arrays.contains(namedCurves, NamedCurve.arbitrary_explicit_char2_curves))
            {
                ecParams = getParametersForNamedCurve(NamedCurve.sect283r1);
            }
        }

        if (ecParams == null)
        {
            /*
             * NOTE: We shouldn't have negotiated ECDHE key exchange since we apparently can't find
             * a suitable curve.
             */
            throw new TlsFatalAlert(AlertDescription.internal_error);
        }

        if (namedCurve < 0)
        {
            writeExplicitECParameters(ecPointFormats, ecParams, output);
        }
        else
        {
            writeNamedECParameters(namedCurve, output);
        }

        return generateEphemeralClientKeyExchange(random, ecPointFormats, ecParams, output);
    }

    public static ECPublicKeyParameters validateECPublicKey(ECPublicKeyParameters key) throws IOException
    {
        // TODO Check RFC 4492 for validation
        return key;
    }

    public static int readECExponent(int fieldSize, InputStream input) throws IOException
    {
        BigInteger K = readECParameter(input);
        if (K.bitLength() < 32)
        {
            int k = K.intValue();
            if (k > 0 && k < fieldSize)
            {
                return k;
            }
        }
        throw new TlsFatalAlert(AlertDescription.illegal_parameter);
    }

    public static BigInteger readECFieldElement(int fieldSize, InputStream input) throws IOException
    {
        return deserializeECFieldElement(fieldSize, TlsUtils.readOpaque8(input));
    }

    public static BigInteger readECParameter(InputStream input) throws IOException
    {
        // TODO Are leading zeroes okay here?
        return new BigInteger(1, TlsUtils.readOpaque8(input));
    }

    public static ECDomainParameters readECParameters(int[] namedCurves, short[] ecPointFormats, InputStream input)
        throws IOException
    {
        try
        {
            short curveType = TlsUtils.readUint8(input);

            switch (curveType)
            {
            case ECCurveType.explicit_prime:
            {
                checkNamedCurve(namedCurves, NamedCurve.arbitrary_explicit_prime_curves);

                BigInteger prime_p = readECParameter(input);
                BigInteger a = readECFieldElement(prime_p.bitLength(), input);
                BigInteger b = readECFieldElement(prime_p.bitLength(), input);
                byte[] baseEncoding = TlsUtils.readOpaque8(input);
                BigInteger order = readECParameter(input);
                BigInteger cofactor = readECParameter(input);
                ECCurve curve = new ECCurve.Fp(prime_p, a, b, order, cofactor);
                ECPoint base = deserializeECPoint(ecPointFormats, curve, baseEncoding);
                return new ECDomainParameters(curve, base, order, cofactor);
            }
            case ECCurveType.explicit_char2:
            {
                checkNamedCurve(namedCurves, NamedCurve.arbitrary_explicit_char2_curves);

                int m = TlsUtils.readUint16(input);
                short basis = TlsUtils.readUint8(input);
                if (!ECBasisType.isValid(basis))
                {
                    throw new TlsFatalAlert(AlertDescription.illegal_parameter);
                }

                int k1 = readECExponent(m, input), k2 = -1, k3 = -1;
                if (basis == ECBasisType.ec_basis_pentanomial)
                {
                    k2 = readECExponent(m, input);
                    k3 = readECExponent(m, input);
                }

                BigInteger a = readECFieldElement(m, input);
                BigInteger b = readECFieldElement(m, input);
                byte[] baseEncoding = TlsUtils.readOpaque8(input);
                BigInteger order = readECParameter(input);
                BigInteger cofactor = readECParameter(input);

                ECCurve curve = (basis == ECBasisType.ec_basis_pentanomial)
                    ? new ECCurve.F2m(m, k1, k2, k3, a, b, order, cofactor)
                    : new ECCurve.F2m(m, k1, a, b, order, cofactor);

                ECPoint base = deserializeECPoint(ecPointFormats, curve, baseEncoding);

                return new ECDomainParameters(curve, base, order, cofactor);
            }
            case ECCurveType.named_curve:
            {
                int namedCurve = TlsUtils.readUint16(input);
                if (!NamedCurve.refersToASpecificNamedCurve(namedCurve))
                {
                    /*
                     * RFC 4492 5.4. All those values of NamedCurve are allowed that refer to a
                     * specific curve. Values of NamedCurve that indicate support for a class of
                     * explicitly defined curves are not allowed here [...].
                     */
                    throw new TlsFatalAlert(AlertDescription.illegal_parameter);
                }

                checkNamedCurve(namedCurves, namedCurve);

                return getParametersForNamedCurve(namedCurve);
            }
            default:
                throw new TlsFatalAlert(AlertDescription.illegal_parameter);
            }
        }
        catch (RuntimeException e)
        {
            throw new TlsFatalAlert(AlertDescription.illegal_parameter, e);
        }
    }

    private static void checkNamedCurve(int[] namedCurves, int namedCurve) throws IOException
    {
        if (namedCurves != null && !Arrays.contains(namedCurves, namedCurve))
        {
            /*
             * RFC 4492 4. [...] servers MUST NOT negotiate the use of an ECC cipher suite
             * unless they can complete the handshake while respecting the choice of curves
             * and compression techniques specified by the client.
             */
            throw new TlsFatalAlert(AlertDescription.illegal_parameter);
        }
    }

    public static void writeECExponent(int k, OutputStream output) throws IOException
    {
        BigInteger K = BigInteger.valueOf(k);
        writeECParameter(K, output);
    }

    public static void writeECFieldElement(ECFieldElement x, OutputStream output) throws IOException
    {
        TlsUtils.writeOpaque8(x.getEncoded(), output);
    }

    public static void writeECFieldElement(int fieldSize, BigInteger x, OutputStream output) throws IOException
    {
        TlsUtils.writeOpaque8(serializeECFieldElement(fieldSize, x), output);
    }

    public static void writeECParameter(BigInteger x, OutputStream output) throws IOException
    {
        TlsUtils.writeOpaque8(BigIntegers.asUnsignedByteArray(x), output);
    }

    public static void writeExplicitECParameters(short[] ecPointFormats, ECDomainParameters ecParameters,
        OutputStream output) throws IOException
    {
        ECCurve curve = ecParameters.getCurve();

        if (ECAlgorithms.isFpCurve(curve))
        {
            TlsUtils.writeUint8(ECCurveType.explicit_prime, output);

            writeECParameter(curve.getField().getCharacteristic(), output);
        }
        else if (ECAlgorithms.isF2mCurve(curve))
        {
            PolynomialExtensionField field = (PolynomialExtensionField)curve.getField();
            int[] exponents = field.getMinimalPolynomial().getExponentsPresent();

            TlsUtils.writeUint8(ECCurveType.explicit_char2, output);

            int m = exponents[exponents.length - 1];
            TlsUtils.checkUint16(m);
            TlsUtils.writeUint16(m, output);

            if (exponents.length == 3)
            {
                TlsUtils.writeUint8(ECBasisType.ec_basis_trinomial, output);
                writeECExponent(exponents[1], output);
            }
            else if (exponents.length == 5)
            {
                TlsUtils.writeUint8(ECBasisType.ec_basis_pentanomial, output);
                writeECExponent(exponents[1], output);
                writeECExponent(exponents[2], output);
                writeECExponent(exponents[3], output);
            }
            else
            {
                throw new IllegalArgumentException("Only trinomial and pentomial curves are supported");
            }
        }
        else
        {
            throw new IllegalArgumentException("'ecParameters' not a known curve type");
        }

        writeECFieldElement(curve.getA(), output);
        writeECFieldElement(curve.getB(), output);
        TlsUtils.writeOpaque8(serializeECPoint(ecPointFormats, ecParameters.getG()), output);
        writeECParameter(ecParameters.getN(), output);
        writeECParameter(ecParameters.getH(), output);
    }

    public static void writeECPoint(short[] ecPointFormats, ECPoint point, OutputStream output) throws IOException
    {
        TlsUtils.writeOpaque8(serializeECPoint(ecPointFormats, point), output);
    }

    public static void writeNamedECParameters(int namedCurve, OutputStream output) throws IOException
    {
        if (!NamedCurve.refersToASpecificNamedCurve(namedCurve))
        {
            /*
             * RFC 4492 5.4. All those values of NamedCurve are allowed that refer to a specific
             * curve. Values of NamedCurve that indicate support for a class of explicitly defined
             * curves are not allowed here [...].
             */
            throw new TlsFatalAlert(AlertDescription.internal_error);
        }

        TlsUtils.writeUint8(ECCurveType.named_curve, output);
        TlsUtils.checkUint16(namedCurve);
        TlsUtils.writeUint16(namedCurve, output);
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy