All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.math.Primes Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8 with debug enabled.

There is a newer version: 1.70
Show newest version
package org.bouncycastle.math;

import java.math.BigInteger;
import java.security.SecureRandom;

import org.bouncycastle.crypto.Digest;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.BigIntegers;

/**
 * Utility methods for generating primes and testing for primality.
 */
public abstract class Primes
{
    public static final int SMALL_FACTOR_LIMIT = 211;

    private static final BigInteger ONE = BigInteger.valueOf(1);
    private static final BigInteger TWO = BigInteger.valueOf(2);
    private static final BigInteger THREE = BigInteger.valueOf(3);

    /**
     * Used to return the output from the
     * {@linkplain Primes#enhancedMRProbablePrimeTest(BigInteger, SecureRandom, int) Enhanced
     * Miller-Rabin Probabilistic Primality Test}
     */
    public static class MROutput
    {
        private static MROutput probablyPrime()
        {
            return new MROutput(false, null);
        }

        private static MROutput provablyCompositeWithFactor(BigInteger factor)
        {
            return new MROutput(true, factor);
        }

        private static MROutput provablyCompositeNotPrimePower()
        {
            return new MROutput(true, null);
        }

        private boolean provablyComposite;
        private BigInteger factor;

        private MROutput(boolean provablyComposite, BigInteger factor)
        {
            this.provablyComposite = provablyComposite;
            this.factor = factor;
        }

        public BigInteger getFactor()
        {
            return factor;
        }

        public boolean isProvablyComposite()
        {
            return provablyComposite;
        }

        public boolean isNotPrimePower()
        {
            return provablyComposite && factor == null;
        }
    }

    /**
     * Used to return the output from the
     * {@linkplain Primes#generateSTRandomPrime(Digest, int, byte[]) Shawe-Taylor Random_Prime
     * Routine}
     */
    public static class STOutput
    {
        private BigInteger prime;
        private byte[] primeSeed;
        private int primeGenCounter;

        private STOutput(BigInteger prime, byte[] primeSeed, int primeGenCounter)
        {
            this.prime = prime;
            this.primeSeed = primeSeed;
            this.primeGenCounter = primeGenCounter;
        }

        public BigInteger getPrime()
        {
            return prime;
        }

        public byte[] getPrimeSeed()
        {
            return primeSeed;
        }

        public int getPrimeGenCounter()
        {
            return primeGenCounter;
        }
    }

    /**
     * FIPS 186-4 C.6 Shawe-Taylor Random_Prime Routine
     *
     * Construct a provable prime number using a hash function.
     *
     * @param hash
     *            the {@link Digest} instance to use (as "Hash()"). Cannot be null.
     * @param length
     *            the length (in bits) of the prime to be generated. Must be at least 2.
     * @param inputSeed
     *            the seed to be used for the generation of the requested prime. Cannot be null or
     *            empty.
     * @return an {@link STOutput} instance containing the requested prime.
     */
    public static STOutput generateSTRandomPrime(Digest hash, int length, byte[] inputSeed)
    {
        if (hash == null)
        {
            throw new IllegalArgumentException("'hash' cannot be null");
        }
        if (length < 2)
        {
            throw new IllegalArgumentException("'length' must be >= 2");
        }
        if (inputSeed == null || inputSeed.length == 0)
        {
            throw new IllegalArgumentException("'inputSeed' cannot be null or empty");
        }

        return implSTRandomPrime(hash, length, Arrays.clone(inputSeed));
    }

    /**
     * FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test
     *
     * Run several iterations of the Miller-Rabin algorithm with randomly-chosen bases. This is an
     * alternative to {@link #isMRProbablePrime(BigInteger, SecureRandom, int)} that provides more
     * information about a composite candidate, which may be useful when generating or validating
     * RSA moduli.
     *
     * @param candidate
     *            the {@link BigInteger} instance to test for primality.
     * @param random
     *            the source of randomness to use to choose bases.
     * @param iterations
     *            the number of randomly-chosen bases to perform the test for.
     * @return an {@link MROutput} instance that can be further queried for details.
     */
    public static MROutput enhancedMRProbablePrimeTest(BigInteger candidate, SecureRandom random, int iterations)
    {
        checkCandidate(candidate, "candidate");

        if (random == null)
        {
            throw new IllegalArgumentException("'random' cannot be null");
        }
        if (iterations < 1)
        {
            throw new IllegalArgumentException("'iterations' must be > 0");
        }

        if (candidate.bitLength() == 2)
        {
            return MROutput.probablyPrime();
        }
        if (!candidate.testBit(0))
        {
            return MROutput.provablyCompositeWithFactor(TWO);
        }

        BigInteger w = candidate;
        BigInteger wSubOne = candidate.subtract(ONE);
        BigInteger wSubTwo = candidate.subtract(TWO);

        int a = wSubOne.getLowestSetBit();
        BigInteger m = wSubOne.shiftRight(a);

        for (int i = 0; i < iterations; ++i)
        {
            BigInteger b = BigIntegers.createRandomInRange(TWO, wSubTwo, random);
            BigInteger g = b.gcd(w);

            if (g.compareTo(ONE) > 0)
            {
                return MROutput.provablyCompositeWithFactor(g);
            }

            BigInteger z = b.modPow(m, w);

            if (z.equals(ONE) || z.equals(wSubOne))
            {
                continue;
            }

            boolean primeToBase = false;

            BigInteger x = z;
            for (int j = 1; j < a; ++j)
            {
                z = z.modPow(TWO, w);

                if (z.equals(wSubOne))
                {
                    primeToBase = true;
                    break;
                }

                if (z.equals(ONE))
                {
                    break;
                }

                x = z;
            }

            if (!primeToBase)
            {
                if (!z.equals(ONE))
                {
                    x = z;
                    z = z.modPow(TWO, w);

                    if (!z.equals(ONE))
                    {
                        x = z;
                    }
                }

                g = x.subtract(ONE).gcd(w);

                if (g.compareTo(ONE) > 0)
                {
                    return MROutput.provablyCompositeWithFactor(g);
                }

                return MROutput.provablyCompositeNotPrimePower();
            }
        }

        return MROutput.probablyPrime();
    }

    /**
     * A fast check for small divisors, up to some implementation-specific limit.
     *
     * @param candidate
     *            the {@link BigInteger} instance to test for division by small factors.
     *
     * @return true if the candidate is found to have any small factors,
     *         false otherwise.
     */
    public static boolean hasAnySmallFactors(BigInteger candidate)
    {
        checkCandidate(candidate, "candidate");

        return implHasAnySmallFactors(candidate);
    }

    /**
     * FIPS 186-4 C.3.1 Miller-Rabin Probabilistic Primality Test
     *
     * Run several iterations of the Miller-Rabin algorithm with randomly-chosen bases.
     *
     * @param candidate
     *            the {@link BigInteger} instance to test for primality.
     * @param random
     *            the source of randomness to use to choose bases.
     * @param iterations
     *            the number of randomly-chosen bases to perform the test for.
     * @return false if any witness to compositeness is found amongst the chosen bases
     *         (so candidate is definitely NOT prime), or else true
     *         (indicating primality with some probability dependent on the number of iterations
     *         that were performed).
     */
    public static boolean isMRProbablePrime(BigInteger candidate, SecureRandom random, int iterations)
    {
        checkCandidate(candidate, "candidate");

        if (random == null)
        {
            throw new IllegalArgumentException("'random' cannot be null");
        }
        if (iterations < 1)
        {
            throw new IllegalArgumentException("'iterations' must be > 0");
        }

        if (candidate.bitLength() == 2)
        {
            return true;
        }
        if (!candidate.testBit(0))
        {
            return false;
        }

        BigInteger w = candidate;
        BigInteger wSubOne = candidate.subtract(ONE);
        BigInteger wSubTwo = candidate.subtract(TWO);

        int a = wSubOne.getLowestSetBit();
        BigInteger m = wSubOne.shiftRight(a);

        for (int i = 0; i < iterations; ++i)
        {
            BigInteger b = BigIntegers.createRandomInRange(TWO, wSubTwo, random);

            if (!implMRProbablePrimeToBase(w, wSubOne, m, a, b))
            {
                return false;
            }
        }

        return true;
    }

    /**
     * FIPS 186-4 C.3.1 Miller-Rabin Probabilistic Primality Test (to a fixed base).
     *
     * Run a single iteration of the Miller-Rabin algorithm against the specified base.
     *
     * @param candidate
     *            the {@link BigInteger} instance to test for primality.
     * @param base
     *            the base value to use for this iteration.
     * @return false if the specified base is a witness to compositeness (so
     *         candidate is definitely NOT prime), or else true.
     */
    public static boolean isMRProbablePrimeToBase(BigInteger candidate, BigInteger base)
    {
        checkCandidate(candidate, "candidate");
        checkCandidate(base, "base");

        if (base.compareTo(candidate.subtract(ONE)) >= 0)
        {
            throw new IllegalArgumentException("'base' must be < ('candidate' - 1)");
        }

        if (candidate.bitLength() == 2)
        {
            return true;
        }

        BigInteger w = candidate;
        BigInteger wSubOne = candidate.subtract(ONE);

        int a = wSubOne.getLowestSetBit();
        BigInteger m = wSubOne.shiftRight(a);

        return implMRProbablePrimeToBase(w, wSubOne, m, a, base);
    }

    private static void checkCandidate(BigInteger n, String name)
    {
        if (n == null || n.signum() < 1 || n.bitLength() < 2)
        {
            throw new IllegalArgumentException("'" + name + "' must be non-null and >= 2");
        }
    }

    private static boolean implHasAnySmallFactors(BigInteger x)
    {
        /*
         * Bundle trial divisors into ~32-bit moduli then use fast tests on the ~32-bit remainders.
         */
        int m = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23;
        int r = x.mod(BigInteger.valueOf(m)).intValue();
        if ((r % 2) == 0 || (r % 3) == 0 || (r % 5) == 0 || (r % 7) == 0 || (r % 11) == 0 || (r % 13) == 0
            || (r % 17) == 0 || (r % 19) == 0 || (r % 23) == 0)
        {
            return true;
        }

        m = 29 * 31 * 37 * 41 * 43;
        r = x.mod(BigInteger.valueOf(m)).intValue();
        if ((r % 29) == 0 || (r % 31) == 0 || (r % 37) == 0 || (r % 41) == 0 || (r % 43) == 0)
        {
            return true;
        }

        m = 47 * 53 * 59 * 61 * 67;
        r = x.mod(BigInteger.valueOf(m)).intValue();
        if ((r % 47) == 0 || (r % 53) == 0 || (r % 59) == 0 || (r % 61) == 0 || (r % 67) == 0)
        {
            return true;
        }

        m = 71 * 73 * 79 * 83;
        r = x.mod(BigInteger.valueOf(m)).intValue();
        if ((r % 71) == 0 || (r % 73) == 0 || (r % 79) == 0 || (r % 83) == 0)
        {
            return true;
        }

        m = 89 * 97 * 101 * 103;
        r = x.mod(BigInteger.valueOf(m)).intValue();
        if ((r % 89) == 0 || (r % 97) == 0 || (r % 101) == 0 || (r % 103) == 0)
        {
            return true;
        }

        m = 107 * 109 * 113 * 127;
        r = x.mod(BigInteger.valueOf(m)).intValue();
        if ((r % 107) == 0 || (r % 109) == 0 || (r % 113) == 0 || (r % 127) == 0)
        {
            return true;
        }

        m = 131 * 137 * 139 * 149;
        r = x.mod(BigInteger.valueOf(m)).intValue();
        if ((r % 131) == 0 || (r % 137) == 0 || (r % 139) == 0 || (r % 149) == 0)
        {
            return true;
        }

        m = 151 * 157 * 163 * 167;
        r = x.mod(BigInteger.valueOf(m)).intValue();
        if ((r % 151) == 0 || (r % 157) == 0 || (r % 163) == 0 || (r % 167) == 0)
        {
            return true;
        }

        m = 173 * 179 * 181 * 191;
        r = x.mod(BigInteger.valueOf(m)).intValue();
        if ((r % 173) == 0 || (r % 179) == 0 || (r % 181) == 0 || (r % 191) == 0)
        {
            return true;
        }

        m = 193 * 197 * 199 * 211;
        r = x.mod(BigInteger.valueOf(m)).intValue();
        if ((r % 193) == 0 || (r % 197) == 0 || (r % 199) == 0 || (r % 211) == 0)
        {
            return true;
        }

        /*
         * NOTE: Unit tests depend on SMALL_FACTOR_LIMIT matching the
         * highest small factor tested here.
         */
        return false;
    }

    private static boolean implMRProbablePrimeToBase(BigInteger w, BigInteger wSubOne, BigInteger m, int a, BigInteger b)
    {
        BigInteger z = b.modPow(m, w);

        if (z.equals(ONE) || z.equals(wSubOne))
        {
            return true;
        }

        boolean result = false;

        for (int j = 1; j < a; ++j)
        {
            z = z.modPow(TWO, w);

            if (z.equals(wSubOne))
            {
                result = true;
                break;
            }

            if (z.equals(ONE))
            {
                return false;
            }
        }

        return result;
    }

    private static STOutput implSTRandomPrime(Digest d, int length, byte[] primeSeed)
    {
        int dLen = d.getDigestSize();

        if (length < 33)
        {
            int primeGenCounter = 0;

            byte[] c0 = new byte[dLen];
            byte[] c1 = new byte[dLen];

            for (;;)
            {
                hash(d, primeSeed, c0, 0);
                inc(primeSeed, 1);

                hash(d, primeSeed, c1, 0);
                inc(primeSeed, 1);

                int c = extract32(c0) ^ extract32(c1);
                c &= (-1 >>> (32 - length));
                c |= (1 << (length - 1)) | 1;

                ++primeGenCounter;

                long c64 = c & 0xFFFFFFFFL;
                if (isPrime32(c64))
                {
                    return new STOutput(BigInteger.valueOf(c64), primeSeed, primeGenCounter);
                }

                if (primeGenCounter > (4 * length))
                {
                    throw new IllegalStateException("Too many iterations in Shawe-Taylor Random_Prime Routine");
                }
            }
        }

        STOutput rec = implSTRandomPrime(d, (length + 3) / 2, primeSeed);

        BigInteger c0 = rec.getPrime();
        primeSeed = rec.getPrimeSeed();
        int primeGenCounter = rec.getPrimeGenCounter();

        int outlen = 8 * dLen;
        int iterations = (length - 1) / outlen;

        int oldCounter = primeGenCounter;

        BigInteger x = hashGen(d, primeSeed, iterations + 1);
        x = x.mod(ONE.shiftLeft(length - 1)).setBit(length - 1);

        BigInteger c0x2 = c0.shiftLeft(1);
        BigInteger tx2 = x.subtract(ONE).divide(c0x2).add(ONE).shiftLeft(1);
        int dt = 0;

        BigInteger c = tx2.multiply(c0).add(ONE);

        /*
         * TODO Since the candidate primes are generated by constant steps ('c0x2'), sieving could
         * be used here in place of the 'hasAnySmallFactors' approach.
         */
        for (;;)
        {
            if (c.bitLength() > length)
            {
                tx2 = ONE.shiftLeft(length - 1).subtract(ONE).divide(c0x2).add(ONE).shiftLeft(1);
                c = tx2.multiply(c0).add(ONE);
            }

            ++primeGenCounter;

            /*
             * This is an optimization of the original algorithm, using trial division to screen out
             * many non-primes quickly.
             * 
             * NOTE: 'primeSeed' is still incremented as if we performed the full check!
             */
            if (!implHasAnySmallFactors(c))
            {
                BigInteger a = hashGen(d, primeSeed, iterations + 1);
                a = a.mod(c.subtract(THREE)).add(TWO);

                tx2 = tx2.add(BigInteger.valueOf(dt));
                dt = 0;

                BigInteger z = a.modPow(tx2, c);

                if (c.gcd(z.subtract(ONE)).equals(ONE) && z.modPow(c0, c).equals(ONE))
                {
                    return new STOutput(c, primeSeed, primeGenCounter);
                }
            }
            else
            {
                inc(primeSeed, iterations + 1);
            }

            if (primeGenCounter >= ((4 * length) + oldCounter))
            {
                throw new IllegalStateException("Too many iterations in Shawe-Taylor Random_Prime Routine");
            }

            dt += 2;
            c = c.add(c0x2);
        }
    }

    private static int extract32(byte[] bs)
    {
        int result = 0;

        int count = Math.min(4, bs.length);
        for (int i = 0; i < count; ++i)
        {
            int b = bs[bs.length - (i + 1)] & 0xFF;
            result |= (b << (8 * i));
        }

        return result;
    }

    private static void hash(Digest d, byte[] input, byte[] output, int outPos)
    {
        d.update(input, 0, input.length);
        d.doFinal(output, outPos);
    }

    private static BigInteger hashGen(Digest d, byte[] seed, int count)
    {
        int dLen = d.getDigestSize();
        int pos = count * dLen;
        byte[] buf = new byte[pos];
        for (int i = 0; i < count; ++i)
        {
            pos -= dLen;
            hash(d, seed, buf, pos);
            inc(seed, 1);
        }
        return new BigInteger(1, buf);
    }

    private static void inc(byte[] seed, int c)
    {
        int pos = seed.length;
        while (c > 0 && --pos >= 0)
        {
            c += (seed[pos] & 0xFF);
            seed[pos] = (byte)c;
            c >>>= 8;
        }
    }

    private static boolean isPrime32(long x)
    {
        if (x >>> 32 != 0L)
        {
            throw new IllegalArgumentException("Size limit exceeded");
        }

        /*
         * Use wheel factorization with 2, 3, 5 to select trial divisors.
         */

        if (x <= 5L)
        {
            return x == 2L || x == 3L || x == 5L;
        }

        if ((x & 1L) == 0L || (x % 3L) == 0L || (x % 5L) == 0L)
        {
            return false;
        }

        long[] ds = new long[]{ 1L, 7L, 11L, 13L, 17L, 19L, 23L, 29L };
        long base = 0L;
        for (int pos = 1;; pos = 0)
        {
            /*
             * Trial division by wheel-selected divisors
             */
            while (pos < ds.length)
            {
                long d = base + ds[pos];
                if (x % d == 0L)
                {
                    return x < 30L;
                }
                ++pos;
            }

            base += 30L;

            if (base * base >= x)
            {
                return true;
            }
        }
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy