org.bouncycastle.crypto.test.GCMReorderTest Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-debug-jdk15on Show documentation
Show all versions of bcprov-ext-debug-jdk15on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8. Note: this package includes the NTRU encryption algorithms.
package org.bouncycastle.crypto.test;
import java.io.IOException;
import java.security.SecureRandom;
import org.bouncycastle.crypto.modes.gcm.GCMExponentiator;
import org.bouncycastle.crypto.modes.gcm.GCMMultiplier;
import org.bouncycastle.crypto.modes.gcm.Tables1kGCMExponentiator;
import org.bouncycastle.crypto.modes.gcm.Tables4kGCMMultiplier;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.Pack;
import org.bouncycastle.util.encoders.Hex;
import junit.framework.TestCase;
public class GCMReorderTest
extends TestCase
{
private static final byte[] H;
private static final SecureRandom random = new SecureRandom();
private static final GCMMultiplier mul = new Tables4kGCMMultiplier();
private static final GCMExponentiator exp = new Tables1kGCMExponentiator();
private static final byte[] EMPTY = new byte[0];
static
{
H = new byte[16];
random.nextBytes(H);
mul.init(Arrays.clone(H));
exp.init(Arrays.clone(H));
}
public void testCombine() throws Exception
{
for (int count = 0; count < 10; ++count)
{
byte[] A = randomBytes(1000);
byte[] C = randomBytes(1000);
byte[] ghashA_ = GHASH(A, EMPTY);
byte[] ghash_C = GHASH(EMPTY, C);
byte[] ghashAC = GHASH(A, C);
byte[] ghashCombine = combine_GHASH(ghashA_, (long)A.length * 8, ghash_C, (long)C.length * 8);
assertTrue(Arrays.areEqual(ghashAC, ghashCombine));
}
}
public void testConcatAuth() throws Exception
{
for (int count = 0; count < 10; ++count)
{
byte[] P = randomBlocks(100);
byte[] A = randomBytes(1000);
byte[] PA = concatArrays(P, A);
byte[] ghashP_ = GHASH(P, EMPTY);
byte[] ghashA_ = GHASH(A, EMPTY);
byte[] ghashPA_ = GHASH(PA, EMPTY);
byte[] ghashConcat = concatAuth_GHASH(ghashP_, (long)P.length * 8, ghashA_, (long)A.length * 8);
assertTrue(Arrays.areEqual(ghashPA_, ghashConcat));
}
}
public void testConcatCrypt() throws Exception
{
for (int count = 0; count < 10; ++count)
{
byte[] P = randomBlocks(100);
byte[] A = randomBytes(1000);
byte[] PA = concatArrays(P, A);
byte[] ghash_P = GHASH(EMPTY, P);
byte[] ghash_A = GHASH(EMPTY, A);
byte[] ghash_PA = GHASH(EMPTY, PA);
byte[] ghashConcat = concatCrypt_GHASH(ghash_P, (long)P.length * 8, ghash_A, (long)A.length * 8);
assertTrue(Arrays.areEqual(ghash_PA, ghashConcat));
}
}
public void testExp()
{
{
byte[] buf1 = new byte[16];
buf1[0] = (byte)0x80;
byte[] buf2 = new byte[16];
for (int pow = 0; pow != 100; ++pow)
{
exp.exponentiateX(pow, buf2);
assertTrue(Arrays.areEqual(buf1, buf2));
mul.multiplyH(buf1);
}
}
long[] testPow = new long[]{ 10, 1, 8, 17, 24, 13, 2, 13, 2, 3 };
byte[][] testData = new byte[][]{
Hex.decode("9185848a877bd87ba071e281f476e8e7"),
Hex.decode("697ce3052137d80745d524474fb6b290"),
Hex.decode("2696fc47198bb23b11296e4f88720a17"),
Hex.decode("01f2f0ead011a4ae0cf3572f1b76dd8e"),
Hex.decode("a53060694a044e4b7fa1e661c5a7bb6b"),
Hex.decode("39c0392e8b6b0e04a7565c85394c2c4c"),
Hex.decode("519c362d502e07f2d8b7597a359a5214"),
Hex.decode("5a527a393675705e19b2117f67695af4"),
Hex.decode("27fc0901d1d332a53ba4d4386c2109d2"),
Hex.decode("93ca9b57174aabedf8220e83366d7df6"),
};
for (int i = 0; i != 10; ++i)
{
long pow = testPow[i];
byte[] data = Arrays.clone(testData[i]);
byte[] expected = Arrays.clone(data);
for (int j = 0; j < pow; ++j)
{
mul.multiplyH(expected);
}
byte[] H_a = new byte[16];
exp.exponentiateX(pow, H_a);
byte[] actual = multiply(data, H_a);
assertTrue(Arrays.areEqual(expected, actual));
}
}
public void testMultiply()
{
byte[] expected = Arrays.clone(H);
mul.multiplyH(expected);
assertTrue(Arrays.areEqual(expected, multiply(H, H)));
for (int count = 0; count < 10; ++count)
{
byte[] a = new byte[16];
random.nextBytes(a);
byte[] b = new byte[16];
random.nextBytes(b);
expected = Arrays.clone(a);
mul.multiplyH(expected);
assertTrue(Arrays.areEqual(expected, multiply(a, H)));
assertTrue(Arrays.areEqual(expected, multiply(H, a)));
expected = Arrays.clone(b);
mul.multiplyH(expected);
assertTrue(Arrays.areEqual(expected, multiply(b, H)));
assertTrue(Arrays.areEqual(expected, multiply(H, b)));
assertTrue(Arrays.areEqual(multiply(a, b), multiply(b, a)));
}
}
private byte[] randomBlocks(int upper)
{
byte[] bs = new byte[16 * random.nextInt(upper)];
random.nextBytes(bs);
return bs;
}
private byte[] randomBytes(int upper)
{
byte[] bs = new byte[random.nextInt(upper)];
random.nextBytes(bs);
return bs;
}
private byte[] concatArrays(byte[] a, byte[] b) throws IOException
{
byte[] ab = new byte[a.length + b.length];
System.arraycopy(a, 0, ab, 0, a.length);
System.arraycopy(b, 0, ab, a.length, b.length);
return ab;
}
private byte[] combine_GHASH(byte[] ghashA_, long bitlenA, byte[] ghash_C, long bitlenC)
{
// Note: bitlenA must be aligned to the block size
long c = (bitlenC + 127) >>> 7;
byte[] H_c = new byte[16];
exp.exponentiateX(c, H_c);
byte[] tmp1 = lengthBlock(bitlenA, 0);
mul.multiplyH(tmp1);
byte[] ghashAC = Arrays.clone(ghashA_);
xor(ghashAC, tmp1);
ghashAC = multiply(ghashAC, H_c);
// No need to touch the len(C) part (second 8 bytes)
xor(ghashAC, tmp1);
xor(ghashAC, ghash_C);
return ghashAC;
}
private byte[] concatAuth_GHASH(byte[] ghashP, long bitlenP, byte[] ghashA, long bitlenA)
{
// Note: bitlenP must be aligned to the block size
long a = (bitlenA + 127) >>> 7;
byte[] tmp1 = lengthBlock(bitlenP, 0);
mul.multiplyH(tmp1);
byte[] tmp2 = lengthBlock(bitlenA ^ (bitlenP + bitlenA), 0);
mul.multiplyH(tmp2);
byte[] H_a = new byte[16];
exp.exponentiateX(a, H_a);
byte[] ghashC = Arrays.clone(ghashP);
xor(ghashC, tmp1);
ghashC = multiply(ghashC, H_a);
xor(ghashC, tmp2);
xor(ghashC, ghashA);
return ghashC;
}
private byte[] concatCrypt_GHASH(byte[] ghashP, long bitlenP, byte[] ghashA, long bitlenA)
{
// Note: bitlenP must be aligned to the block size
long a = (bitlenA + 127) >>> 7;
byte[] tmp1 = lengthBlock(0, bitlenP);
mul.multiplyH(tmp1);
byte[] tmp2 = lengthBlock(0, bitlenA ^ (bitlenP + bitlenA));
mul.multiplyH(tmp2);
byte[] H_a = new byte[16];
exp.exponentiateX(a, H_a);
byte[] ghashC = Arrays.clone(ghashP);
xor(ghashC, tmp1);
ghashC = multiply(ghashC, H_a);
xor(ghashC, tmp2);
xor(ghashC, ghashA);
return ghashC;
}
private byte[] GHASH(byte[] A, byte[] C)
{
byte[] X = new byte[16];
{
for (int pos = 0; pos < A.length; pos += 16)
{
byte[] tmp = new byte[16];
int num = Math.min(A.length - pos, 16);
System.arraycopy(A, pos, tmp, 0, num);
xor(X, tmp);
mul.multiplyH(X);
}
}
{
for (int pos = 0; pos < C.length; pos += 16)
{
byte[] tmp = new byte[16];
int num = Math.min(C.length - pos, 16);
System.arraycopy(C, pos, tmp, 0, num);
xor(X, tmp);
mul.multiplyH(X);
}
}
{
xor(X, lengthBlock((long)A.length * 8, (long)C.length * 8));
mul.multiplyH(X);
}
return X;
}
private static byte[] lengthBlock(long bitlenA, long bitlenC)
{
byte[] tmp = new byte[16];
Pack.longToBigEndian(bitlenA, tmp, 0);
Pack.longToBigEndian(bitlenC, tmp, 8);
return tmp;
}
private static void xor(byte[] block, byte[] val)
{
for (int i = 15; i >= 0; --i)
{
block[i] ^= val[i];
}
}
private static byte[] multiply(byte[] a, byte[] b)
{
byte[] c = new byte[16];
byte[] tmp = Arrays.clone(b);
for (int i = 0; i < 16; ++i)
{
byte bits = a[i];
for (int j = 7; j >= 0; --j)
{
if ((bits & (1 << j)) != 0)
{
xor(c, tmp);
}
boolean lsb = (tmp[15] & 1) != 0;
shiftRight(tmp);
if (lsb)
{
// R = new byte[]{ 0xe1, ... };
// GCMUtil.xor(v, R);
tmp[0] ^= (byte)0xe1;
}
}
}
return c;
}
private static void shiftRight(byte[] block)
{
int i = 0;
int bit = 0;
for (;;)
{
int b = block[i] & 0xff;
block[i] = (byte) ((b >>> 1) | bit);
if (++i == 16)
{
break;
}
bit = (b & 1) << 7;
}
}
}