All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.agreement.ECMQVBasicAgreement Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.

The newest version!
package org.bouncycastle.crypto.agreement;

import java.math.BigInteger;

import org.bouncycastle.crypto.BasicAgreement;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.params.ECDomainParameters;
import org.bouncycastle.crypto.params.ECPrivateKeyParameters;
import org.bouncycastle.crypto.params.ECPublicKeyParameters;
import org.bouncycastle.crypto.params.MQVPrivateParameters;
import org.bouncycastle.crypto.params.MQVPublicParameters;
import org.bouncycastle.math.ec.ECAlgorithms;
import org.bouncycastle.math.ec.ECConstants;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.util.Properties;

public class ECMQVBasicAgreement
    implements BasicAgreement
{
    MQVPrivateParameters privParams;

    public void init(
        CipherParameters key)
    {
        this.privParams = (MQVPrivateParameters)key;

        CryptoServicesRegistrar.checkConstraints(Utils.getDefaultProperties("ECMQV", this.privParams.getStaticPrivateKey()));
    }

    public int getFieldSize()
    {
        return (privParams.getStaticPrivateKey().getParameters().getCurve().getFieldSize() + 7) / 8;
    }

    public BigInteger calculateAgreement(CipherParameters pubKey)
    {
        if (Properties.isOverrideSet("org.bouncycastle.ec.disable_mqv"))
        {
            throw new IllegalStateException("ECMQV explicitly disabled");
        }

        MQVPublicParameters pubParams = (MQVPublicParameters)pubKey;

        ECPrivateKeyParameters staticPrivateKey = privParams.getStaticPrivateKey();
        ECDomainParameters parameters = staticPrivateKey.getParameters();

        if (!parameters.equals(pubParams.getStaticPublicKey().getParameters()))
        {
            throw new IllegalStateException("ECMQV public key components have wrong domain parameters");
        }

        ECPoint agreement = calculateMqvAgreement(parameters, staticPrivateKey,
            privParams.getEphemeralPrivateKey(), privParams.getEphemeralPublicKey(),
            pubParams.getStaticPublicKey(), pubParams.getEphemeralPublicKey()).normalize();

        if (agreement.isInfinity())
        {
            throw new IllegalStateException("Infinity is not a valid agreement value for MQV");
        }

        return agreement.getAffineXCoord().toBigInteger();
    }

    // The ECMQV Primitive as described in SEC-1, 3.4
    private ECPoint calculateMqvAgreement(
        ECDomainParameters      parameters,
        ECPrivateKeyParameters  d1U,
        ECPrivateKeyParameters  d2U,
        ECPublicKeyParameters   Q2U,
        ECPublicKeyParameters   Q1V,
        ECPublicKeyParameters   Q2V)
    {
        BigInteger n = parameters.getN();
        int e = (n.bitLength() + 1) / 2;
        BigInteger powE = ECConstants.ONE.shiftLeft(e);

        ECCurve curve = parameters.getCurve();

        // The Q2U public key is optional - but will be calculated for us if it wasn't present
        ECPoint q2u = ECAlgorithms.cleanPoint(curve, Q2U.getQ());
        ECPoint q1v = ECAlgorithms.cleanPoint(curve, Q1V.getQ());
        ECPoint q2v = ECAlgorithms.cleanPoint(curve, Q2V.getQ());

        BigInteger x = q2u.getAffineXCoord().toBigInteger();
        BigInteger xBar = x.mod(powE);
        BigInteger Q2UBar = xBar.setBit(e);
        BigInteger s = d1U.getD().multiply(Q2UBar).add(d2U.getD()).mod(n);

        BigInteger xPrime = q2v.getAffineXCoord().toBigInteger();
        BigInteger xPrimeBar = xPrime.mod(powE);
        BigInteger Q2VBar = xPrimeBar.setBit(e);

        BigInteger hs = parameters.getH().multiply(s).mod(n);

        return ECAlgorithms.sumOfTwoMultiplies(
            q1v, Q2VBar.multiply(hs).mod(n), q2v, hs);
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy