All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.digests.Kangaroo Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.

The newest version!
package org.bouncycastle.crypto.digests;

import org.bouncycastle.crypto.*;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.Bytes;
import org.bouncycastle.util.Pack;

/**
 * Kangaroo.
 */
public final class Kangaroo
{
    /**
     * Default digest length.
     */
    private static final int DIGESTLEN = 32;

    /**
     * KangarooTwelve.
     */
    public static class KangarooTwelve
        extends KangarooBase
    {
        /**
         * Constructor.
         */
        public KangarooTwelve()
        {
            this(DIGESTLEN, CryptoServicePurpose.ANY);
        }

        /**
         * Constructor.
         *
         * @param pLength the digest length
         */
        public KangarooTwelve(final int pLength, CryptoServicePurpose purpose)
        {
            super(128, 12, pLength, purpose);
        }

        public KangarooTwelve(CryptoServicePurpose purpose)
        {
            this(DIGESTLEN, purpose);
        }

        public String getAlgorithmName()
        {
            return "KangarooTwelve";
        }
    }

    /**
     * MarsupilamiFourteen.
     */
    public static class MarsupilamiFourteen
        extends KangarooBase
    {
        /**
         * Constructor.
         */
        public MarsupilamiFourteen()
        {
            this(DIGESTLEN, CryptoServicePurpose.ANY);
        }

        /**
         * Constructor.
         *
         * @param pLength the digest length
         */
        public MarsupilamiFourteen(final int pLength, CryptoServicePurpose purpose)
        {
            super(256, 14, pLength, purpose);
        }
        public MarsupilamiFourteen(CryptoServicePurpose purpose)
        {
            this(DIGESTLEN, purpose);
        }

        public String getAlgorithmName()
        {
            return "MarsupilamiFourteen";
        }
    }

    /**
     * Kangaroo Parameters.
     */
    public static class KangarooParameters
        implements CipherParameters
    {
        /**
         * The personalisation.
         */
        private byte[] thePersonal;

        /**
         * Obtain the personalisation.
         *
         * @return the personalisation
         */
        public byte[] getPersonalisation()
        {
            return Arrays.clone(thePersonal);
        }

        /**
         * Parameter Builder.
         */
        public static class Builder
        {
            /**
             * The personalisation.
             */
            private byte[] thePersonal;

            /**
             * Set the personalisation.
             *
             * @param pPersonal the personalisation
             * @return the Builder
             */
            public Builder setPersonalisation(final byte[] pPersonal)
            {
                thePersonal = Arrays.clone(pPersonal);
                return this;
            }

            /**
             * Build the parameters.
             *
             * @return the parameters
             */
            public KangarooParameters build()
            {
                /* Create params */
                final KangarooParameters myParams = new KangarooParameters();

                /* Record personalisation */
                if (thePersonal != null)
                {
                    myParams.thePersonal = thePersonal;
                }

                /* Return the parameters */
                return myParams;
            }
        }
    }

    /**
     * The Kangaroo Base.
     */
    abstract static class KangarooBase
        implements ExtendedDigest, Xof
    {
        /**
         * Block Size.
         */
        private static final int BLKSIZE = 8192;

        /**
         * Single marker.
         */
        private static final byte[] SINGLE = new byte[]{7};

        /**
         * Intermediate marker.
         */
        private static final byte[] INTERMEDIATE = new byte[]{0xb};

        /**
         * Final marker.
         */
        private static final byte[] FINAL = new byte[]{-1, -1, 6};

        /**
         * First marker.
         */
        private static final byte[] FIRST = new byte[]{3, 0, 0, 0, 0, 0, 0, 0};

        /**
         * The single byte buffer.
         */
        private final byte[] singleByte = new byte[1];

        /**
         * The Tree Sponge.
         */
        private final KangarooSponge theTree;

        /**
         * The Leaf Sponge.
         */
        private final KangarooSponge theLeaf;

        /**
         * The chain length.
         */
        private final int theChainLen;

        /**
         * The personalisation.
         */
        private byte[] thePersonal;

        /**
         * Are we squeezing?.
         */
        private boolean squeezing;

        /**
         * The current node.
         */
        private int theCurrNode;

        /**
         * The data processed in the current node.
         */
        private int theProcessed;

        private final CryptoServicePurpose purpose;

        /**
         * Constructor.
         *
         * @param pStrength the strength
         * @param pRounds   the rounds.
         * @param pLength   the digest length
         */
        KangarooBase(final int pStrength,
                     final int pRounds,
                     final int pLength,
                     CryptoServicePurpose purpose)
        {
            /* Create underlying digests */
            theTree = new KangarooSponge(pStrength, pRounds);
            theLeaf = new KangarooSponge(pStrength, pRounds);
            theChainLen = pStrength >> 2;

            /* Build personalisation */
            buildPersonal(null);
            this.purpose = purpose;

            CryptoServicesRegistrar.checkConstraints(Utils.getDefaultProperties(this, pStrength, purpose));

        }

        /**
         * Constructor.
         *
         * @param pPersonal the personalisation
         */
        private void buildPersonal(final byte[] pPersonal)
        {
            /* Build personalisation */
            final int myLen = pPersonal == null ? 0 : pPersonal.length;
            final byte[] myEnc = lengthEncode(myLen);
            thePersonal = pPersonal == null
                ? new byte[myLen + myEnc.length]
                : Arrays.copyOf(pPersonal, myLen + myEnc.length);
            System.arraycopy(myEnc, 0, thePersonal, myLen, myEnc.length);
        }

        public int getByteLength()
        {
            return theTree.theRateBytes;
        }

        public int getDigestSize()
        {
            return theChainLen >> 1;
        }

        /**
         * Initialise the digest.
         *
         * @param pParams the parameters
         */
        public void init(final KangarooParameters pParams)
        {
            /* Build the new personalisation */
            buildPersonal(pParams.getPersonalisation());

            /* Reset everything */
            reset();
        }

        public void update(final byte pIn)
        {
            singleByte[0] = pIn;
            update(singleByte, 0, 1);
        }

        public void update(final byte[] pIn,
                           final int pInOff,
                           final int pLen)
        {
            processData(pIn, pInOff, pLen);
        }

        public int doFinal(final byte[] pOut,
                           final int pOutOffset)
        {
            /* finalise the digest */
            return doFinal(pOut, pOutOffset, getDigestSize());
        }

        public int doFinal(final byte[] pOut,
                           final int pOutOffset,
                           final int pOutLen)
        {
            /* Check that we are not already outputting */
            if (squeezing)
            {
                throw new IllegalStateException("Already outputting");
            }

            /* Build the required output */
            final int length = doOutput(pOut, pOutOffset, pOutLen);

            /* reset the underlying digest and return the length */
            reset();
            return length;
        }

        public int doOutput(final byte[] pOut,
                            final int pOutOffset,
                            final int pOutLen)
        {
            /* If we are not currently squeezing, switch to squeezing */
            if (!squeezing)
            {
                switchToSqueezing();
            }

            /* Reject if length is invalid */
            if (pOutLen < 0)
            {
                throw new IllegalArgumentException("Invalid output length");
            }

            /* Squeeze out the data and return the length */
            theTree.squeeze(pOut, pOutOffset, pOutLen);
            return pOutLen;
        }

        /**
         * Process data.
         *
         * @param pIn       the input buffer
         * @param pInOffSet the starting offset in the input buffer
         * @param pLen      the length of data to process
         */
        private void processData(final byte[] pIn,
                                 final int pInOffSet,
                                 final int pLen)
        {
            /* Check validity */
            if (squeezing)
            {
                throw new IllegalStateException("attempt to absorb while squeezing");
            }

            /* Determine current sponge */
            final KangarooSponge mySponge = theCurrNode == 0 ? theTree : theLeaf;

            /* Determine space in current block */
            final int mySpace = BLKSIZE - theProcessed;

            /* If all data can be processed by the current sponge*/
            if (mySpace >= pLen)
            {
                /* Absorb and return */
                mySponge.absorb(pIn, pInOffSet, pLen);
                theProcessed += pLen;
                return;
            }

            /* Absorb as much as possible into current sponge */
            if (mySpace > 0)
            {
                mySponge.absorb(pIn, pInOffSet, mySpace);
                theProcessed += mySpace;
            }

            /* Loop while we have data remaining */
            int myProcessed = mySpace;
            while (myProcessed < pLen)
            {
                /* Switch Leaf if the current sponge is full */
                if (theProcessed == BLKSIZE)
                {
                    switchLeaf(true);
                }

                /* Process next block */
                final int myDataLen = Math.min(pLen - myProcessed, BLKSIZE);
                theLeaf.absorb(pIn, pInOffSet + myProcessed, myDataLen);
                theProcessed += myDataLen;
                myProcessed += myDataLen;
            }
        }

        public void reset()
        {
            theTree.initSponge();
            theLeaf.initSponge();
            theCurrNode = 0;
            theProcessed = 0;
            squeezing = false;
        }

        /**
         * Complete Leaf.
         *
         * @param pMoreToCome is there more data to come? true/false
         */
        private void switchLeaf(final boolean pMoreToCome)
        {
            /* If we are the first node */
            if (theCurrNode == 0)
            {
                /* Absorb the padding */
                theTree.absorb(FIRST, 0, FIRST.length);

                /* else intermediate node */
            }
            else
            {
                /* Absorb intermediate node marker */
                theLeaf.absorb(INTERMEDIATE, 0, INTERMEDIATE.length);

                /* Complete the node */
                final byte[] myHash = new byte[theChainLen];
                theLeaf.squeeze(myHash, 0, theChainLen);
                theTree.absorb(myHash, 0, theChainLen);

                /* Re-init the leaf */
                theLeaf.initSponge();
            }

            /* Switch to next node */
            if (pMoreToCome)
            {
                theCurrNode++;
            }
            theProcessed = 0;
        }

        /**
         * Switch to squeezing.
         */
        private void switchToSqueezing()
        {
            /* Absorb the personalisation */
            processData(thePersonal, 0, thePersonal.length);

            /* Complete the absorption */
            if (theCurrNode == 0)
            {
                switchSingle();
            }
            else
            {
                switchFinal();
            }
        }

        /**
         * Switch single node to squeezing.
         */
        private void switchSingle()
        {
            /* Absorb single node marker */
            theTree.absorb(SINGLE, 0, 1);

            /* Switch to squeezing */
            theTree.padAndSwitchToSqueezingPhase();
        }

        /**
         * Switch multiple node to squeezing.
         */
        private void switchFinal()
        {
            /* Complete the current leaf */
            switchLeaf(false);

            /* Absorb length */
            final byte[] myLength = lengthEncode(theCurrNode);
            theTree.absorb(myLength, 0, myLength.length);

            /* Absorb final node marker */
            theTree.absorb(FINAL, 0, FINAL.length);

            /* Switch to squeezing */
            theTree.padAndSwitchToSqueezingPhase();
        }

        /**
         * right Encode a length.
         *
         * @param strLen the length to encode
         * @return the encoded length
         */
        private static byte[] lengthEncode(final long strLen)
        {
            /* Calculate # of bytes required to hold length */
            byte n = 0;
            long v = strLen;
            if (v != 0)
            {
                n = 1;
                while ((v >>= Bytes.SIZE) != 0)
                {
                    n++;
                }
            }

            /* Allocate byte array and store length */
            final byte[] b = new byte[n + 1];
            b[n] = n;

            /* Encode the length */
            for (int i = 0; i < n; i++)
            {
                b[i] = (byte)(strLen >> (Bytes.SIZE * (n - i - 1)));
            }

            /* Return the encoded length */
            return b;
        }
    }

    /**
     * The Kangaroo Sponge.
     */
    private static class KangarooSponge
    {
        /**
         * The round constants.
         */
        private static long[] KeccakRoundConstants = new long[]{0x0000000000000001L, 0x0000000000008082L,
            0x800000000000808aL, 0x8000000080008000L, 0x000000000000808bL, 0x0000000080000001L, 0x8000000080008081L,
            0x8000000000008009L, 0x000000000000008aL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000aL,
            0x000000008000808bL, 0x800000000000008bL, 0x8000000000008089L, 0x8000000000008003L, 0x8000000000008002L,
            0x8000000000000080L, 0x000000000000800aL, 0x800000008000000aL, 0x8000000080008081L, 0x8000000000008080L,
            0x0000000080000001L, 0x8000000080008008L};

        /**
         * The number of rounds.
         */
        private final int theRounds;

        /**
         * The rateBytes.
         */
        private final int theRateBytes;

        /**
         * The state.
         */
        private final long[] theState = new long[25];

        /**
         * The queue.
         */
        private final byte[] theQueue;

        /**
         * The numnber of bytes in the queue.
         */
        private int bytesInQueue;

        /**
         * Are we squeezing?
         */
        private boolean squeezing;

        /**
         * Constructor.
         *
         * @param pStrength the strength
         * @param pRounds   the rounds.
         */
        KangarooSponge(final int pStrength,
                       final int pRounds)
        {
            theRateBytes = (1600 - (pStrength << 1)) >> 3;
            theRounds = pRounds;
            theQueue = new byte[theRateBytes];
            initSponge();
        }

        /**
         * Initialise the sponge.
         */
        private void initSponge()
        {
            Arrays.fill(theState, 0L);
            Arrays.fill(theQueue, (byte)0);
            bytesInQueue = 0;
            squeezing = false;
        }

        /**
         * Absorb data into sponge.
         *
         * @param data the data buffer
         * @param off  the starting offset in the buffer.
         * @param len  the length of data to absorb
         */
        private void absorb(final byte[] data,
                            final int off,
                            final int len)
        {
            /* Sanity checks */
            if (squeezing)
            {
                throw new IllegalStateException("attempt to absorb while squeezing");
            }

            int count = 0;
            while (count < len)
            {
                if (bytesInQueue == 0 && count <= (len - theRateBytes))
                {
                    do
                    {
                        KangarooAbsorb(data, off + count);
                        count += theRateBytes;
                    }
                    while (count <= (len - theRateBytes));

                }
                else
                {
                    final int partialBlock = Math.min(theRateBytes - bytesInQueue, len - count);
                    System.arraycopy(data, off + count, theQueue, bytesInQueue, partialBlock);

                    bytesInQueue += partialBlock;
                    count += partialBlock;

                    if (bytesInQueue == theRateBytes)
                    {
                        KangarooAbsorb(theQueue, 0);
                        bytesInQueue = 0;
                    }
                }
            }
        }

        /**
         * Handle padding.
         */
        private void padAndSwitchToSqueezingPhase()
        {
            /* Fill any remaining space in queue with zeroes */
            for (int i = bytesInQueue; i < theRateBytes; i++)
            {
                theQueue[i] = 0;
            }
            theQueue[theRateBytes - 1] ^= 0x80;
            KangarooAbsorb(theQueue, 0);

            KangarooExtract();
            bytesInQueue = theRateBytes;
            squeezing = true;
        }

        /**
         * Squeeze data out.
         *
         * @param output       the output buffer
         * @param offset       the offset in the output buffer
         * @param outputLength the output length
         */
        private void squeeze(final byte[] output,
                             final int offset,
                             final int outputLength)
        {
            if (!squeezing)
            {
                padAndSwitchToSqueezingPhase();
            }

            int i = 0;
            while (i < outputLength)
            {
                if (bytesInQueue == 0)
                {
                    KangarooPermutation();
                    KangarooExtract();
                    bytesInQueue = theRateBytes;
                }
                int partialBlock = Math.min(bytesInQueue, outputLength - i);
                System.arraycopy(theQueue, theRateBytes - bytesInQueue, output, offset + i, partialBlock);
                bytesInQueue -= partialBlock;
                i += partialBlock;
            }
        }

        /**
         * Absorb a block of data.
         *
         * @param data the data to absorb
         * @param off  the starting offset in the data
         */
        private void KangarooAbsorb(final byte[] data,
                                    final int off)
        {
            final int count = theRateBytes >> 3;
            int offSet = off;
            for (int i = 0; i < count; ++i)
            {
                theState[i] ^= Pack.littleEndianToLong(data, offSet);
                offSet += 8;
            }

            KangarooPermutation();
        }

        /**
         * Extract a block of data to the queue.
         */
        private void KangarooExtract()
        {
            Pack.longToLittleEndian(theState, 0, theRateBytes >> 3, theQueue, 0);
        }

        /**
         * Permutation (KP).
         */
        private void KangarooPermutation()
        {
            long[] A = theState;

            long a00 = A[0], a01 = A[1], a02 = A[2], a03 = A[3], a04 = A[4];
            long a05 = A[5], a06 = A[6], a07 = A[7], a08 = A[8], a09 = A[9];
            long a10 = A[10], a11 = A[11], a12 = A[12], a13 = A[13], a14 = A[14];
            long a15 = A[15], a16 = A[16], a17 = A[17], a18 = A[18], a19 = A[19];
            long a20 = A[20], a21 = A[21], a22 = A[22], a23 = A[23], a24 = A[24];

            int myBase = KeccakRoundConstants.length - theRounds;
            for (int i = 0; i < theRounds; i++)
            {
                // theta
                long c0 = a00 ^ a05 ^ a10 ^ a15 ^ a20;
                long c1 = a01 ^ a06 ^ a11 ^ a16 ^ a21;
                long c2 = a02 ^ a07 ^ a12 ^ a17 ^ a22;
                long c3 = a03 ^ a08 ^ a13 ^ a18 ^ a23;
                long c4 = a04 ^ a09 ^ a14 ^ a19 ^ a24;

                long d1 = (c1 << 1 | c1 >>> -1) ^ c4;
                long d2 = (c2 << 1 | c2 >>> -1) ^ c0;
                long d3 = (c3 << 1 | c3 >>> -1) ^ c1;
                long d4 = (c4 << 1 | c4 >>> -1) ^ c2;
                long d0 = (c0 << 1 | c0 >>> -1) ^ c3;

                a00 ^= d1;
                a05 ^= d1;
                a10 ^= d1;
                a15 ^= d1;
                a20 ^= d1;
                a01 ^= d2;
                a06 ^= d2;
                a11 ^= d2;
                a16 ^= d2;
                a21 ^= d2;
                a02 ^= d3;
                a07 ^= d3;
                a12 ^= d3;
                a17 ^= d3;
                a22 ^= d3;
                a03 ^= d4;
                a08 ^= d4;
                a13 ^= d4;
                a18 ^= d4;
                a23 ^= d4;
                a04 ^= d0;
                a09 ^= d0;
                a14 ^= d0;
                a19 ^= d0;
                a24 ^= d0;

                // rho/pi
                c1 = a01 << 1 | a01 >>> 63;
                a01 = a06 << 44 | a06 >>> 20;
                a06 = a09 << 20 | a09 >>> 44;
                a09 = a22 << 61 | a22 >>> 3;
                a22 = a14 << 39 | a14 >>> 25;
                a14 = a20 << 18 | a20 >>> 46;
                a20 = a02 << 62 | a02 >>> 2;
                a02 = a12 << 43 | a12 >>> 21;
                a12 = a13 << 25 | a13 >>> 39;
                a13 = a19 << 8 | a19 >>> 56;
                a19 = a23 << 56 | a23 >>> 8;
                a23 = a15 << 41 | a15 >>> 23;
                a15 = a04 << 27 | a04 >>> 37;
                a04 = a24 << 14 | a24 >>> 50;
                a24 = a21 << 2 | a21 >>> 62;
                a21 = a08 << 55 | a08 >>> 9;
                a08 = a16 << 45 | a16 >>> 19;
                a16 = a05 << 36 | a05 >>> 28;
                a05 = a03 << 28 | a03 >>> 36;
                a03 = a18 << 21 | a18 >>> 43;
                a18 = a17 << 15 | a17 >>> 49;
                a17 = a11 << 10 | a11 >>> 54;
                a11 = a07 << 6 | a07 >>> 58;
                a07 = a10 << 3 | a10 >>> 61;
                a10 = c1;

                // chi
                c0 = a00 ^ (~a01 & a02);
                c1 = a01 ^ (~a02 & a03);
                a02 ^= ~a03 & a04;
                a03 ^= ~a04 & a00;
                a04 ^= ~a00 & a01;
                a00 = c0;
                a01 = c1;

                c0 = a05 ^ (~a06 & a07);
                c1 = a06 ^ (~a07 & a08);
                a07 ^= ~a08 & a09;
                a08 ^= ~a09 & a05;
                a09 ^= ~a05 & a06;
                a05 = c0;
                a06 = c1;

                c0 = a10 ^ (~a11 & a12);
                c1 = a11 ^ (~a12 & a13);
                a12 ^= ~a13 & a14;
                a13 ^= ~a14 & a10;
                a14 ^= ~a10 & a11;
                a10 = c0;
                a11 = c1;

                c0 = a15 ^ (~a16 & a17);
                c1 = a16 ^ (~a17 & a18);
                a17 ^= ~a18 & a19;
                a18 ^= ~a19 & a15;
                a19 ^= ~a15 & a16;
                a15 = c0;
                a16 = c1;

                c0 = a20 ^ (~a21 & a22);
                c1 = a21 ^ (~a22 & a23);
                a22 ^= ~a23 & a24;
                a23 ^= ~a24 & a20;
                a24 ^= ~a20 & a21;
                a20 = c0;
                a21 = c1;

                // iota
                a00 ^= KeccakRoundConstants[myBase + i];
            }

            A[0] = a00;
            A[1] = a01;
            A[2] = a02;
            A[3] = a03;
            A[4] = a04;
            A[5] = a05;
            A[6] = a06;
            A[7] = a07;
            A[8] = a08;
            A[9] = a09;
            A[10] = a10;
            A[11] = a11;
            A[12] = a12;
            A[13] = a13;
            A[14] = a14;
            A[15] = a15;
            A[16] = a16;
            A[17] = a17;
            A[18] = a18;
            A[19] = a19;
            A[20] = a20;
            A[21] = a21;
            A[22] = a22;
            A[23] = a23;
            A[24] = a24;
        }
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy