All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.engines.AESLightEngine Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.

The newest version!
package org.bouncycastle.crypto.engines;

import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.DataLengthException;
import org.bouncycastle.crypto.OutputLengthException;
import org.bouncycastle.crypto.constraints.DefaultServiceProperties;
import org.bouncycastle.crypto.params.KeyParameter;
import org.bouncycastle.util.Pack;

/**
 * an implementation of the AES (Rijndael), from FIPS-197.
 * 

* For further details see: https://csrc.nist.gov/encryption/aes/. * * This implementation is based on optimizations from Dr. Brian Gladman's paper and C code at * https://fp.gladman.plus.com/cryptography_technology/rijndael/ * * There are three levels of tradeoff of speed vs memory * Because java has no preprocessor, they are written as three separate classes from which to choose * * The fastest uses 8Kbytes of static tables to precompute round calculations, 4 256 word tables for encryption * and 4 for decryption. * * The middle performance version uses only one 256 word table for each, for a total of 2Kbytes, * adding 12 rotate operations per round to compute the values contained in the other tables from * the contents of the first * * The slowest version uses no static tables at all and computes the values * in each round. *

* This file contains the slowest performance version with no static tables * for round precomputation, but it has the smallest foot print. * */ public class AESLightEngine implements BlockCipher { // The S box private static final byte[] S = { (byte)99, (byte)124, (byte)119, (byte)123, (byte)242, (byte)107, (byte)111, (byte)197, (byte)48, (byte)1, (byte)103, (byte)43, (byte)254, (byte)215, (byte)171, (byte)118, (byte)202, (byte)130, (byte)201, (byte)125, (byte)250, (byte)89, (byte)71, (byte)240, (byte)173, (byte)212, (byte)162, (byte)175, (byte)156, (byte)164, (byte)114, (byte)192, (byte)183, (byte)253, (byte)147, (byte)38, (byte)54, (byte)63, (byte)247, (byte)204, (byte)52, (byte)165, (byte)229, (byte)241, (byte)113, (byte)216, (byte)49, (byte)21, (byte)4, (byte)199, (byte)35, (byte)195, (byte)24, (byte)150, (byte)5, (byte)154, (byte)7, (byte)18, (byte)128, (byte)226, (byte)235, (byte)39, (byte)178, (byte)117, (byte)9, (byte)131, (byte)44, (byte)26, (byte)27, (byte)110, (byte)90, (byte)160, (byte)82, (byte)59, (byte)214, (byte)179, (byte)41, (byte)227, (byte)47, (byte)132, (byte)83, (byte)209, (byte)0, (byte)237, (byte)32, (byte)252, (byte)177, (byte)91, (byte)106, (byte)203, (byte)190, (byte)57, (byte)74, (byte)76, (byte)88, (byte)207, (byte)208, (byte)239, (byte)170, (byte)251, (byte)67, (byte)77, (byte)51, (byte)133, (byte)69, (byte)249, (byte)2, (byte)127, (byte)80, (byte)60, (byte)159, (byte)168, (byte)81, (byte)163, (byte)64, (byte)143, (byte)146, (byte)157, (byte)56, (byte)245, (byte)188, (byte)182, (byte)218, (byte)33, (byte)16, (byte)255, (byte)243, (byte)210, (byte)205, (byte)12, (byte)19, (byte)236, (byte)95, (byte)151, (byte)68, (byte)23, (byte)196, (byte)167, (byte)126, (byte)61, (byte)100, (byte)93, (byte)25, (byte)115, (byte)96, (byte)129, (byte)79, (byte)220, (byte)34, (byte)42, (byte)144, (byte)136, (byte)70, (byte)238, (byte)184, (byte)20, (byte)222, (byte)94, (byte)11, (byte)219, (byte)224, (byte)50, (byte)58, (byte)10, (byte)73, (byte)6, (byte)36, (byte)92, (byte)194, (byte)211, (byte)172, (byte)98, (byte)145, (byte)149, (byte)228, (byte)121, (byte)231, (byte)200, (byte)55, (byte)109, (byte)141, (byte)213, (byte)78, (byte)169, (byte)108, (byte)86, (byte)244, (byte)234, (byte)101, (byte)122, (byte)174, (byte)8, (byte)186, (byte)120, (byte)37, (byte)46, (byte)28, (byte)166, (byte)180, (byte)198, (byte)232, (byte)221, (byte)116, (byte)31, (byte)75, (byte)189, (byte)139, (byte)138, (byte)112, (byte)62, (byte)181, (byte)102, (byte)72, (byte)3, (byte)246, (byte)14, (byte)97, (byte)53, (byte)87, (byte)185, (byte)134, (byte)193, (byte)29, (byte)158, (byte)225, (byte)248, (byte)152, (byte)17, (byte)105, (byte)217, (byte)142, (byte)148, (byte)155, (byte)30, (byte)135, (byte)233, (byte)206, (byte)85, (byte)40, (byte)223, (byte)140, (byte)161, (byte)137, (byte)13, (byte)191, (byte)230, (byte)66, (byte)104, (byte)65, (byte)153, (byte)45, (byte)15, (byte)176, (byte)84, (byte)187, (byte)22, }; // The inverse S-box private static final byte[] Si = { (byte)82, (byte)9, (byte)106, (byte)213, (byte)48, (byte)54, (byte)165, (byte)56, (byte)191, (byte)64, (byte)163, (byte)158, (byte)129, (byte)243, (byte)215, (byte)251, (byte)124, (byte)227, (byte)57, (byte)130, (byte)155, (byte)47, (byte)255, (byte)135, (byte)52, (byte)142, (byte)67, (byte)68, (byte)196, (byte)222, (byte)233, (byte)203, (byte)84, (byte)123, (byte)148, (byte)50, (byte)166, (byte)194, (byte)35, (byte)61, (byte)238, (byte)76, (byte)149, (byte)11, (byte)66, (byte)250, (byte)195, (byte)78, (byte)8, (byte)46, (byte)161, (byte)102, (byte)40, (byte)217, (byte)36, (byte)178, (byte)118, (byte)91, (byte)162, (byte)73, (byte)109, (byte)139, (byte)209, (byte)37, (byte)114, (byte)248, (byte)246, (byte)100, (byte)134, (byte)104, (byte)152, (byte)22, (byte)212, (byte)164, (byte)92, (byte)204, (byte)93, (byte)101, (byte)182, (byte)146, (byte)108, (byte)112, (byte)72, (byte)80, (byte)253, (byte)237, (byte)185, (byte)218, (byte)94, (byte)21, (byte)70, (byte)87, (byte)167, (byte)141, (byte)157, (byte)132, (byte)144, (byte)216, (byte)171, (byte)0, (byte)140, (byte)188, (byte)211, (byte)10, (byte)247, (byte)228, (byte)88, (byte)5, (byte)184, (byte)179, (byte)69, (byte)6, (byte)208, (byte)44, (byte)30, (byte)143, (byte)202, (byte)63, (byte)15, (byte)2, (byte)193, (byte)175, (byte)189, (byte)3, (byte)1, (byte)19, (byte)138, (byte)107, (byte)58, (byte)145, (byte)17, (byte)65, (byte)79, (byte)103, (byte)220, (byte)234, (byte)151, (byte)242, (byte)207, (byte)206, (byte)240, (byte)180, (byte)230, (byte)115, (byte)150, (byte)172, (byte)116, (byte)34, (byte)231, (byte)173, (byte)53, (byte)133, (byte)226, (byte)249, (byte)55, (byte)232, (byte)28, (byte)117, (byte)223, (byte)110, (byte)71, (byte)241, (byte)26, (byte)113, (byte)29, (byte)41, (byte)197, (byte)137, (byte)111, (byte)183, (byte)98, (byte)14, (byte)170, (byte)24, (byte)190, (byte)27, (byte)252, (byte)86, (byte)62, (byte)75, (byte)198, (byte)210, (byte)121, (byte)32, (byte)154, (byte)219, (byte)192, (byte)254, (byte)120, (byte)205, (byte)90, (byte)244, (byte)31, (byte)221, (byte)168, (byte)51, (byte)136, (byte)7, (byte)199, (byte)49, (byte)177, (byte)18, (byte)16, (byte)89, (byte)39, (byte)128, (byte)236, (byte)95, (byte)96, (byte)81, (byte)127, (byte)169, (byte)25, (byte)181, (byte)74, (byte)13, (byte)45, (byte)229, (byte)122, (byte)159, (byte)147, (byte)201, (byte)156, (byte)239, (byte)160, (byte)224, (byte)59, (byte)77, (byte)174, (byte)42, (byte)245, (byte)176, (byte)200, (byte)235, (byte)187, (byte)60, (byte)131, (byte)83, (byte)153, (byte)97, (byte)23, (byte)43, (byte)4, (byte)126, (byte)186, (byte)119, (byte)214, (byte)38, (byte)225, (byte)105, (byte)20, (byte)99, (byte)85, (byte)33, (byte)12, (byte)125, }; // vector used in calculating key schedule (powers of x in GF(256)) private static final int[] rcon = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91 }; private static int shift(int r, int shift) { return (r >>> shift) | (r << -shift); } /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */ private static final int m1 = 0x80808080; private static final int m2 = 0x7f7f7f7f; private static final int m3 = 0x0000001b; private static final int m4 = 0xC0C0C0C0; private static final int m5 = 0x3f3f3f3f; private static int FFmulX(int x) { return (((x & m2) << 1) ^ (((x & m1) >>> 7) * m3)); } private static int FFmulX2(int x) { int t0 = (x & m5) << 2; int t1 = (x & m4); t1 ^= (t1 >>> 1); return t0 ^ (t1 >>> 2) ^ (t1 >>> 5); } /* The following defines provide alternative definitions of FFmulX that might give improved performance if a fast 32-bit multiply is not available. private int FFmulX(int x) { int u = x & m1; u |= (u >> 1); return ((x & m2) << 1) ^ ((u >>> 3) | (u >>> 6)); } private static final int m4 = 0x1b1b1b1b; private int FFmulX(int x) { int u = x & m1; return ((x & m2) << 1) ^ ((u - (u >>> 7)) & m4); } */ private static int mcol(int x) { int t0, t1; t0 = shift(x, 8); t1 = x ^ t0; return shift(t1, 16) ^ t0 ^ FFmulX(t1); } private static int inv_mcol(int x) { int t0, t1; t0 = x; t1 = t0 ^ shift(t0, 8); t0 ^= FFmulX(t1); t1 ^= FFmulX2(t0); t0 ^= t1 ^ shift(t1, 16); return t0; } private static int subWord(int x) { return (S[x&255]&255 | ((S[(x>>8)&255]&255)<<8) | ((S[(x>>16)&255]&255)<<16) | S[(x>>24)&255]<<24); } /** * Calculate the necessary round keys * The number of calculations depends on key size and block size * AES specified a fixed block size of 128 bits and key sizes 128/192/256 bits * This code is written assuming those are the only possible values */ private int[][] generateWorkingKey(byte[] key, boolean forEncryption) { int keyLen = key.length; if (keyLen < 16 || keyLen > 32 || (keyLen & 7) != 0) { throw new IllegalArgumentException("Key length not 128/192/256 bits."); } int KC = keyLen >>> 2; ROUNDS = KC + 6; // This is not always true for the generalized Rijndael that allows larger block sizes int[][] W = new int[ROUNDS+1][4]; // 4 words in a block switch (KC) { case 4: { int col0 = Pack.littleEndianToInt(key, 0); W[0][0] = col0; int col1 = Pack.littleEndianToInt(key, 4); W[0][1] = col1; int col2 = Pack.littleEndianToInt(key, 8); W[0][2] = col2; int col3 = Pack.littleEndianToInt(key, 12); W[0][3] = col3; for (int i = 1; i <= 10; ++i) { int colx = subWord(shift(col3, 8)) ^ rcon[i - 1]; col0 ^= colx; W[i][0] = col0; col1 ^= col0; W[i][1] = col1; col2 ^= col1; W[i][2] = col2; col3 ^= col2; W[i][3] = col3; } break; } case 6: { int col0 = Pack.littleEndianToInt(key, 0); W[0][0] = col0; int col1 = Pack.littleEndianToInt(key, 4); W[0][1] = col1; int col2 = Pack.littleEndianToInt(key, 8); W[0][2] = col2; int col3 = Pack.littleEndianToInt(key, 12); W[0][3] = col3; int col4 = Pack.littleEndianToInt(key, 16); int col5 = Pack.littleEndianToInt(key, 20); int i = 1, rcon = 1, colx; for (;;) { W[i ][0] = col4; W[i ][1] = col5; colx = subWord(shift(col5, 8)) ^ rcon; rcon <<= 1; col0 ^= colx; W[i ][2] = col0; col1 ^= col0; W[i ][3] = col1; col2 ^= col1; W[i + 1][0] = col2; col3 ^= col2; W[i + 1][1] = col3; col4 ^= col3; W[i + 1][2] = col4; col5 ^= col4; W[i + 1][3] = col5; colx = subWord(shift(col5, 8)) ^ rcon; rcon <<= 1; col0 ^= colx; W[i + 2][0] = col0; col1 ^= col0; W[i + 2][1] = col1; col2 ^= col1; W[i + 2][2] = col2; col3 ^= col2; W[i + 2][3] = col3; if ((i += 3) >= 13) { break; } col4 ^= col3; col5 ^= col4; } break; } case 8: { int col0 = Pack.littleEndianToInt(key, 0); W[0][0] = col0; int col1 = Pack.littleEndianToInt(key, 4); W[0][1] = col1; int col2 = Pack.littleEndianToInt(key, 8); W[0][2] = col2; int col3 = Pack.littleEndianToInt(key, 12); W[0][3] = col3; int col4 = Pack.littleEndianToInt(key, 16); W[1][0] = col4; int col5 = Pack.littleEndianToInt(key, 20); W[1][1] = col5; int col6 = Pack.littleEndianToInt(key, 24); W[1][2] = col6; int col7 = Pack.littleEndianToInt(key, 28); W[1][3] = col7; int i = 2, rcon = 1, colx; for (;;) { colx = subWord(shift(col7, 8)) ^ rcon; rcon <<= 1; col0 ^= colx; W[i][0] = col0; col1 ^= col0; W[i][1] = col1; col2 ^= col1; W[i][2] = col2; col3 ^= col2; W[i][3] = col3; ++i; if (i >= 15) { break; } colx = subWord(col3); col4 ^= colx; W[i][0] = col4; col5 ^= col4; W[i][1] = col5; col6 ^= col5; W[i][2] = col6; col7 ^= col6; W[i][3] = col7; ++i; } break; } default: { throw new IllegalStateException("Should never get here"); } } if (!forEncryption) { for (int j = 1; j < ROUNDS; j++) { for (int i = 0; i < 4; i++) { W[j][i] = inv_mcol(W[j][i]); } } } return W; } private int ROUNDS; private int[][] WorkingKey = null; private boolean forEncryption; private static final int BLOCK_SIZE = 16; /** * default constructor - 128 bit block size. */ public AESLightEngine() { CryptoServicesRegistrar.checkConstraints(new DefaultServiceProperties(getAlgorithmName(), bitsOfSecurity())); } /** * initialise an AES cipher. * * @param forEncryption whether or not we are for encryption. * @param params the parameters required to set up the cipher. * @exception IllegalArgumentException if the params argument is * inappropriate. */ public void init( boolean forEncryption, CipherParameters params) { if (params instanceof KeyParameter) { WorkingKey = generateWorkingKey(((KeyParameter)params).getKey(), forEncryption); this.forEncryption = forEncryption; CryptoServicesRegistrar.checkConstraints(new DefaultServiceProperties(getAlgorithmName(), bitsOfSecurity(), params, Utils.getPurpose(forEncryption))); return; } throw new IllegalArgumentException("invalid parameter passed to AES init - " + params.getClass().getName()); } public String getAlgorithmName() { return "AES"; } public int getBlockSize() { return BLOCK_SIZE; } public int processBlock(byte[] in, int inOff, byte[] out, int outOff) { if (WorkingKey == null) { throw new IllegalStateException("AES engine not initialised"); } if (inOff > (in.length - BLOCK_SIZE)) { throw new DataLengthException("input buffer too short"); } if (outOff > (out.length - BLOCK_SIZE)) { throw new OutputLengthException("output buffer too short"); } if (forEncryption) { encryptBlock(in, inOff, out, outOff, WorkingKey); } else { decryptBlock(in, inOff, out, outOff, WorkingKey); } return BLOCK_SIZE; } public void reset() { } private void encryptBlock(byte[] in, int inOff, byte[] out, int outOff, int[][] KW) { int C0 = Pack.littleEndianToInt(in, inOff + 0); int C1 = Pack.littleEndianToInt(in, inOff + 4); int C2 = Pack.littleEndianToInt(in, inOff + 8); int C3 = Pack.littleEndianToInt(in, inOff + 12); int t0 = C0 ^ KW[0][0]; int t1 = C1 ^ KW[0][1]; int t2 = C2 ^ KW[0][2]; int r = 1, r0, r1, r2, r3 = C3 ^ KW[0][3]; while (r < ROUNDS - 1) { r0 = mcol((S[t0&255]&255) ^ ((S[(t1>>8)&255]&255)<<8) ^ ((S[(t2>>16)&255]&255)<<16) ^ (S[(r3>>24)&255]<<24)) ^ KW[r][0]; r1 = mcol((S[t1&255]&255) ^ ((S[(t2>>8)&255]&255)<<8) ^ ((S[(r3>>16)&255]&255)<<16) ^ (S[(t0>>24)&255]<<24)) ^ KW[r][1]; r2 = mcol((S[t2&255]&255) ^ ((S[(r3>>8)&255]&255)<<8) ^ ((S[(t0>>16)&255]&255)<<16) ^ (S[(t1>>24)&255]<<24)) ^ KW[r][2]; r3 = mcol((S[r3&255]&255) ^ ((S[(t0>>8)&255]&255)<<8) ^ ((S[(t1>>16)&255]&255)<<16) ^ (S[(t2>>24)&255]<<24)) ^ KW[r++][3]; t0 = mcol((S[r0&255]&255) ^ ((S[(r1>>8)&255]&255)<<8) ^ ((S[(r2>>16)&255]&255)<<16) ^ (S[(r3>>24)&255]<<24)) ^ KW[r][0]; t1 = mcol((S[r1&255]&255) ^ ((S[(r2>>8)&255]&255)<<8) ^ ((S[(r3>>16)&255]&255)<<16) ^ (S[(r0>>24)&255]<<24)) ^ KW[r][1]; t2 = mcol((S[r2&255]&255) ^ ((S[(r3>>8)&255]&255)<<8) ^ ((S[(r0>>16)&255]&255)<<16) ^ (S[(r1>>24)&255]<<24)) ^ KW[r][2]; r3 = mcol((S[r3&255]&255) ^ ((S[(r0>>8)&255]&255)<<8) ^ ((S[(r1>>16)&255]&255)<<16) ^ (S[(r2>>24)&255]<<24)) ^ KW[r++][3]; } r0 = mcol((S[t0&255]&255) ^ ((S[(t1>>8)&255]&255)<<8) ^ ((S[(t2>>16)&255]&255)<<16) ^ (S[(r3>>24)&255]<<24)) ^ KW[r][0]; r1 = mcol((S[t1&255]&255) ^ ((S[(t2>>8)&255]&255)<<8) ^ ((S[(r3>>16)&255]&255)<<16) ^ (S[(t0>>24)&255]<<24)) ^ KW[r][1]; r2 = mcol((S[t2&255]&255) ^ ((S[(r3>>8)&255]&255)<<8) ^ ((S[(t0>>16)&255]&255)<<16) ^ (S[(t1>>24)&255]<<24)) ^ KW[r][2]; r3 = mcol((S[r3&255]&255) ^ ((S[(t0>>8)&255]&255)<<8) ^ ((S[(t1>>16)&255]&255)<<16) ^ (S[(t2>>24)&255]<<24)) ^ KW[r++][3]; // the final round is a simple function of S C0 = (S[r0&255]&255) ^ ((S[(r1>>8)&255]&255)<<8) ^ ((S[(r2>>16)&255]&255)<<16) ^ (S[(r3>>24)&255]<<24) ^ KW[r][0]; C1 = (S[r1&255]&255) ^ ((S[(r2>>8)&255]&255)<<8) ^ ((S[(r3>>16)&255]&255)<<16) ^ (S[(r0>>24)&255]<<24) ^ KW[r][1]; C2 = (S[r2&255]&255) ^ ((S[(r3>>8)&255]&255)<<8) ^ ((S[(r0>>16)&255]&255)<<16) ^ (S[(r1>>24)&255]<<24) ^ KW[r][2]; C3 = (S[r3&255]&255) ^ ((S[(r0>>8)&255]&255)<<8) ^ ((S[(r1>>16)&255]&255)<<16) ^ (S[(r2>>24)&255]<<24) ^ KW[r][3]; Pack.intToLittleEndian(C0, out, outOff + 0); Pack.intToLittleEndian(C1, out, outOff + 4); Pack.intToLittleEndian(C2, out, outOff + 8); Pack.intToLittleEndian(C3, out, outOff + 12); } private void decryptBlock(byte[] in, int inOff, byte[] out, int outOff, int[][] KW) { int C0 = Pack.littleEndianToInt(in, inOff + 0); int C1 = Pack.littleEndianToInt(in, inOff + 4); int C2 = Pack.littleEndianToInt(in, inOff + 8); int C3 = Pack.littleEndianToInt(in, inOff + 12); int t0 = C0 ^ KW[ROUNDS][0]; int t1 = C1 ^ KW[ROUNDS][1]; int t2 = C2 ^ KW[ROUNDS][2]; int r = ROUNDS - 1, r0, r1, r2, r3 = C3 ^ KW[ROUNDS][3]; while (r > 1) { r0 = inv_mcol((Si[t0&255]&255) ^ ((Si[(r3>>8)&255]&255)<<8) ^ ((Si[(t2>>16)&255]&255)<<16) ^ (Si[(t1>>24)&255]<<24)) ^ KW[r][0]; r1 = inv_mcol((Si[t1&255]&255) ^ ((Si[(t0>>8)&255]&255)<<8) ^ ((Si[(r3>>16)&255]&255)<<16) ^ (Si[(t2>>24)&255]<<24)) ^ KW[r][1]; r2 = inv_mcol((Si[t2&255]&255) ^ ((Si[(t1>>8)&255]&255)<<8) ^ ((Si[(t0>>16)&255]&255)<<16) ^ (Si[(r3>>24)&255]<<24)) ^ KW[r][2]; r3 = inv_mcol((Si[r3&255]&255) ^ ((Si[(t2>>8)&255]&255)<<8) ^ ((Si[(t1>>16)&255]&255)<<16) ^ (Si[(t0>>24)&255]<<24)) ^ KW[r--][3]; t0 = inv_mcol((Si[r0&255]&255) ^ ((Si[(r3>>8)&255]&255)<<8) ^ ((Si[(r2>>16)&255]&255)<<16) ^ (Si[(r1>>24)&255]<<24)) ^ KW[r][0]; t1 = inv_mcol((Si[r1&255]&255) ^ ((Si[(r0>>8)&255]&255)<<8) ^ ((Si[(r3>>16)&255]&255)<<16) ^ (Si[(r2>>24)&255]<<24)) ^ KW[r][1]; t2 = inv_mcol((Si[r2&255]&255) ^ ((Si[(r1>>8)&255]&255)<<8) ^ ((Si[(r0>>16)&255]&255)<<16) ^ (Si[(r3>>24)&255]<<24)) ^ KW[r][2]; r3 = inv_mcol((Si[r3&255]&255) ^ ((Si[(r2>>8)&255]&255)<<8) ^ ((Si[(r1>>16)&255]&255)<<16) ^ (Si[(r0>>24)&255]<<24)) ^ KW[r--][3]; } r0 = inv_mcol((Si[t0&255]&255) ^ ((Si[(r3>>8)&255]&255)<<8) ^ ((Si[(t2>>16)&255]&255)<<16) ^ (Si[(t1>>24)&255]<<24)) ^ KW[r][0]; r1 = inv_mcol((Si[t1&255]&255) ^ ((Si[(t0>>8)&255]&255)<<8) ^ ((Si[(r3>>16)&255]&255)<<16) ^ (Si[(t2>>24)&255]<<24)) ^ KW[r][1]; r2 = inv_mcol((Si[t2&255]&255) ^ ((Si[(t1>>8)&255]&255)<<8) ^ ((Si[(t0>>16)&255]&255)<<16) ^ (Si[(r3>>24)&255]<<24)) ^ KW[r][2]; r3 = inv_mcol((Si[r3&255]&255) ^ ((Si[(t2>>8)&255]&255)<<8) ^ ((Si[(t1>>16)&255]&255)<<16) ^ (Si[(t0>>24)&255]<<24)) ^ KW[r][3]; // the final round's table is a simple function of Si C0 = (Si[r0&255]&255) ^ ((Si[(r3>>8)&255]&255)<<8) ^ ((Si[(r2>>16)&255]&255)<<16) ^ (Si[(r1>>24)&255]<<24) ^ KW[0][0]; C1 = (Si[r1&255]&255) ^ ((Si[(r0>>8)&255]&255)<<8) ^ ((Si[(r3>>16)&255]&255)<<16) ^ (Si[(r2>>24)&255]<<24) ^ KW[0][1]; C2 = (Si[r2&255]&255) ^ ((Si[(r1>>8)&255]&255)<<8) ^ ((Si[(r0>>16)&255]&255)<<16) ^ (Si[(r3>>24)&255]<<24) ^ KW[0][2]; C3 = (Si[r3&255]&255) ^ ((Si[(r2>>8)&255]&255)<<8) ^ ((Si[(r1>>16)&255]&255)<<16) ^ (Si[(r0>>24)&255]<<24) ^ KW[0][3]; Pack.intToLittleEndian(C0, out, outOff + 0); Pack.intToLittleEndian(C1, out, outOff + 4); Pack.intToLittleEndian(C2, out, outOff + 8); Pack.intToLittleEndian(C3, out, outOff + 12); } private int bitsOfSecurity() { if (WorkingKey == null) { return 256; } return (WorkingKey.length - 7) << 5; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy