org.bouncycastle.crypto.engines.ElGamalEngine Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-debug-jdk18on Show documentation
Show all versions of bcprov-ext-debug-jdk18on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.
The newest version!
package org.bouncycastle.crypto.engines;
import java.math.BigInteger;
import java.security.SecureRandom;
import org.bouncycastle.crypto.AsymmetricBlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.DataLengthException;
import org.bouncycastle.crypto.constraints.ConstraintUtils;
import org.bouncycastle.crypto.constraints.DefaultServiceProperties;
import org.bouncycastle.crypto.params.ElGamalKeyParameters;
import org.bouncycastle.crypto.params.ElGamalPrivateKeyParameters;
import org.bouncycastle.crypto.params.ElGamalPublicKeyParameters;
import org.bouncycastle.crypto.params.ParametersWithRandom;
import org.bouncycastle.util.BigIntegers;
/**
* this does your basic ElGamal algorithm.
*/
public class ElGamalEngine
implements AsymmetricBlockCipher
{
private ElGamalKeyParameters key;
private SecureRandom random;
private boolean forEncryption;
private int bitSize;
private static final BigInteger ZERO = BigInteger.valueOf(0);
private static final BigInteger ONE = BigInteger.valueOf(1);
private static final BigInteger TWO = BigInteger.valueOf(2);
/**
* initialise the ElGamal engine.
*
* @param forEncryption true if we are encrypting, false otherwise.
* @param param the necessary ElGamal key parameters.
*/
public void init(
boolean forEncryption,
CipherParameters param)
{
if (param instanceof ParametersWithRandom)
{
ParametersWithRandom p = (ParametersWithRandom)param;
this.key = (ElGamalKeyParameters)p.getParameters();
this.random = p.getRandom();
}
else
{
this.key = (ElGamalKeyParameters)param;
this.random = CryptoServicesRegistrar.getSecureRandom();
}
this.forEncryption = forEncryption;
BigInteger p = key.getParameters().getP();
bitSize = p.bitLength();
if (forEncryption)
{
if (!(key instanceof ElGamalPublicKeyParameters))
{
throw new IllegalArgumentException("ElGamalPublicKeyParameters are required for encryption.");
}
}
else
{
if (!(key instanceof ElGamalPrivateKeyParameters))
{
throw new IllegalArgumentException("ElGamalPrivateKeyParameters are required for decryption.");
}
}
CryptoServicesRegistrar.checkConstraints(new DefaultServiceProperties("RSA", ConstraintUtils.bitsOfSecurityFor(key.getParameters().getP()), key, Utils.getPurpose(forEncryption)));
}
/**
* Return the maximum size for an input block to this engine.
* For ElGamal this is always one byte less than the size of P on
* encryption, and twice the length as the size of P on decryption.
*
* @return maximum size for an input block.
*/
public int getInputBlockSize()
{
if (forEncryption)
{
return (bitSize - 1) / 8;
}
return 2 * ((bitSize + 7) / 8);
}
/**
* Return the maximum size for an output block to this engine.
* For ElGamal this is always one byte less than the size of P on
* decryption, and twice the length as the size of P on encryption.
*
* @return maximum size for an output block.
*/
public int getOutputBlockSize()
{
if (forEncryption)
{
return 2 * ((bitSize + 7) / 8);
}
return (bitSize - 1) / 8;
}
/**
* Process a single block using the basic ElGamal algorithm.
*
* @param in the input array.
* @param inOff the offset into the input buffer where the data starts.
* @param inLen the length of the data to be processed.
* @return the result of the ElGamal process.
* @exception DataLengthException the input block is too large.
*/
public byte[] processBlock(
byte[] in,
int inOff,
int inLen)
{
if (key == null)
{
throw new IllegalStateException("ElGamal engine not initialised");
}
int maxLength = forEncryption
? (bitSize - 1 + 7) / 8
: getInputBlockSize();
if (inLen > maxLength)
{
throw new DataLengthException("input too large for ElGamal cipher.\n");
}
BigInteger p = key.getParameters().getP();
if (key instanceof ElGamalPrivateKeyParameters) // decryption
{
byte[] in1 = new byte[inLen / 2];
byte[] in2 = new byte[inLen / 2];
System.arraycopy(in, inOff, in1, 0, in1.length);
System.arraycopy(in, inOff + in1.length, in2, 0, in2.length);
BigInteger gamma = new BigInteger(1, in1);
BigInteger phi = new BigInteger(1, in2);
ElGamalPrivateKeyParameters priv = (ElGamalPrivateKeyParameters)key;
// a shortcut, which generally relies on p being prime amongst other things.
// if a problem with this shows up, check the p and g values!
BigInteger m = gamma.modPow(p.subtract(ONE).subtract(priv.getX()), p).multiply(phi).mod(p);
return BigIntegers.asUnsignedByteArray(m);
}
else // encryption
{
byte[] block;
if (inOff != 0 || inLen != in.length)
{
block = new byte[inLen];
System.arraycopy(in, inOff, block, 0, inLen);
}
else
{
block = in;
}
BigInteger input = new BigInteger(1, block);
if (input.compareTo(p) >= 0)
{
throw new DataLengthException("input too large for ElGamal cipher.\n");
}
ElGamalPublicKeyParameters pub = (ElGamalPublicKeyParameters)key;
int pBitLength = p.bitLength();
BigInteger k = BigIntegers.createRandomBigInteger(pBitLength, random);
while (k.equals(ZERO) || (k.compareTo(p.subtract(TWO)) > 0))
{
k = BigIntegers.createRandomBigInteger(pBitLength, random);
}
BigInteger g = key.getParameters().getG();
BigInteger gamma = g.modPow(k, p);
BigInteger phi = input.multiply(pub.getY().modPow(k, p)).mod(p);
byte[] out1 = gamma.toByteArray();
byte[] out2 = phi.toByteArray();
byte[] output = new byte[this.getOutputBlockSize()];
if (out1.length > output.length / 2)
{
System.arraycopy(out1, 1, output, output.length / 2 - (out1.length - 1), out1.length - 1);
}
else
{
System.arraycopy(out1, 0, output, output.length / 2 - out1.length, out1.length);
}
if (out2.length > output.length / 2)
{
System.arraycopy(out2, 1, output, output.length - (out2.length - 1), out2.length - 1);
}
else
{
System.arraycopy(out2, 0, output, output.length - out2.length, out2.length);
}
return output;
}
}
}