All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.engines.TwofishEngine Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.

The newest version!
package org.bouncycastle.crypto.engines;

import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.DataLengthException;
import org.bouncycastle.crypto.OutputLengthException;
import org.bouncycastle.crypto.constraints.DefaultServiceProperties;
import org.bouncycastle.crypto.params.KeyParameter;
import org.bouncycastle.util.Integers;
import org.bouncycastle.util.Pack;

/**
 * A class that provides Twofish encryption operations.
 *
 * This Java implementation is based on the Java reference
 * implementation provided by Bruce Schneier and developed
 * by Raif S. Naffah.
 */
public final class TwofishEngine
    implements BlockCipher
{
    private static final byte[][] P =  {
    {  // p0
        (byte) 0xA9, (byte) 0x67, (byte) 0xB3, (byte) 0xE8,
        (byte) 0x04, (byte) 0xFD, (byte) 0xA3, (byte) 0x76,
        (byte) 0x9A, (byte) 0x92, (byte) 0x80, (byte) 0x78,
        (byte) 0xE4, (byte) 0xDD, (byte) 0xD1, (byte) 0x38,
        (byte) 0x0D, (byte) 0xC6, (byte) 0x35, (byte) 0x98,
        (byte) 0x18, (byte) 0xF7, (byte) 0xEC, (byte) 0x6C,
        (byte) 0x43, (byte) 0x75, (byte) 0x37, (byte) 0x26,
        (byte) 0xFA, (byte) 0x13, (byte) 0x94, (byte) 0x48,
        (byte) 0xF2, (byte) 0xD0, (byte) 0x8B, (byte) 0x30,
        (byte) 0x84, (byte) 0x54, (byte) 0xDF, (byte) 0x23,
        (byte) 0x19, (byte) 0x5B, (byte) 0x3D, (byte) 0x59,
        (byte) 0xF3, (byte) 0xAE, (byte) 0xA2, (byte) 0x82,
        (byte) 0x63, (byte) 0x01, (byte) 0x83, (byte) 0x2E,
        (byte) 0xD9, (byte) 0x51, (byte) 0x9B, (byte) 0x7C,
        (byte) 0xA6, (byte) 0xEB, (byte) 0xA5, (byte) 0xBE,
        (byte) 0x16, (byte) 0x0C, (byte) 0xE3, (byte) 0x61,
        (byte) 0xC0, (byte) 0x8C, (byte) 0x3A, (byte) 0xF5,
        (byte) 0x73, (byte) 0x2C, (byte) 0x25, (byte) 0x0B,
        (byte) 0xBB, (byte) 0x4E, (byte) 0x89, (byte) 0x6B,
        (byte) 0x53, (byte) 0x6A, (byte) 0xB4, (byte) 0xF1,
        (byte) 0xE1, (byte) 0xE6, (byte) 0xBD, (byte) 0x45,
        (byte) 0xE2, (byte) 0xF4, (byte) 0xB6, (byte) 0x66,
        (byte) 0xCC, (byte) 0x95, (byte) 0x03, (byte) 0x56,
        (byte) 0xD4, (byte) 0x1C, (byte) 0x1E, (byte) 0xD7,
        (byte) 0xFB, (byte) 0xC3, (byte) 0x8E, (byte) 0xB5,
        (byte) 0xE9, (byte) 0xCF, (byte) 0xBF, (byte) 0xBA,
        (byte) 0xEA, (byte) 0x77, (byte) 0x39, (byte) 0xAF,
        (byte) 0x33, (byte) 0xC9, (byte) 0x62, (byte) 0x71,
        (byte) 0x81, (byte) 0x79, (byte) 0x09, (byte) 0xAD,
        (byte) 0x24, (byte) 0xCD, (byte) 0xF9, (byte) 0xD8,
        (byte) 0xE5, (byte) 0xC5, (byte) 0xB9, (byte) 0x4D,
        (byte) 0x44, (byte) 0x08, (byte) 0x86, (byte) 0xE7,
        (byte) 0xA1, (byte) 0x1D, (byte) 0xAA, (byte) 0xED,
        (byte) 0x06, (byte) 0x70, (byte) 0xB2, (byte) 0xD2,
        (byte) 0x41, (byte) 0x7B, (byte) 0xA0, (byte) 0x11,
        (byte) 0x31, (byte) 0xC2, (byte) 0x27, (byte) 0x90,
        (byte) 0x20, (byte) 0xF6, (byte) 0x60, (byte) 0xFF,
        (byte) 0x96, (byte) 0x5C, (byte) 0xB1, (byte) 0xAB,
        (byte) 0x9E, (byte) 0x9C, (byte) 0x52, (byte) 0x1B,
        (byte) 0x5F, (byte) 0x93, (byte) 0x0A, (byte) 0xEF,
        (byte) 0x91, (byte) 0x85, (byte) 0x49, (byte) 0xEE,
        (byte) 0x2D, (byte) 0x4F, (byte) 0x8F, (byte) 0x3B,
        (byte) 0x47, (byte) 0x87, (byte) 0x6D, (byte) 0x46,
        (byte) 0xD6, (byte) 0x3E, (byte) 0x69, (byte) 0x64,
        (byte) 0x2A, (byte) 0xCE, (byte) 0xCB, (byte) 0x2F,
        (byte) 0xFC, (byte) 0x97, (byte) 0x05, (byte) 0x7A,
        (byte) 0xAC, (byte) 0x7F, (byte) 0xD5, (byte) 0x1A,
        (byte) 0x4B, (byte) 0x0E, (byte) 0xA7, (byte) 0x5A,
        (byte) 0x28, (byte) 0x14, (byte) 0x3F, (byte) 0x29,
        (byte) 0x88, (byte) 0x3C, (byte) 0x4C, (byte) 0x02,
        (byte) 0xB8, (byte) 0xDA, (byte) 0xB0, (byte) 0x17,
        (byte) 0x55, (byte) 0x1F, (byte) 0x8A, (byte) 0x7D,
        (byte) 0x57, (byte) 0xC7, (byte) 0x8D, (byte) 0x74,
        (byte) 0xB7, (byte) 0xC4, (byte) 0x9F, (byte) 0x72,
        (byte) 0x7E, (byte) 0x15, (byte) 0x22, (byte) 0x12,
        (byte) 0x58, (byte) 0x07, (byte) 0x99, (byte) 0x34,
        (byte) 0x6E, (byte) 0x50, (byte) 0xDE, (byte) 0x68,
        (byte) 0x65, (byte) 0xBC, (byte) 0xDB, (byte) 0xF8,
        (byte) 0xC8, (byte) 0xA8, (byte) 0x2B, (byte) 0x40,
        (byte) 0xDC, (byte) 0xFE, (byte) 0x32, (byte) 0xA4,
        (byte) 0xCA, (byte) 0x10, (byte) 0x21, (byte) 0xF0,
        (byte) 0xD3, (byte) 0x5D, (byte) 0x0F, (byte) 0x00,
        (byte) 0x6F, (byte) 0x9D, (byte) 0x36, (byte) 0x42,
        (byte) 0x4A, (byte) 0x5E, (byte) 0xC1, (byte) 0xE0 },
    {  // p1
        (byte) 0x75, (byte) 0xF3, (byte) 0xC6, (byte) 0xF4,
        (byte) 0xDB, (byte) 0x7B, (byte) 0xFB, (byte) 0xC8,
        (byte) 0x4A, (byte) 0xD3, (byte) 0xE6, (byte) 0x6B,
        (byte) 0x45, (byte) 0x7D, (byte) 0xE8, (byte) 0x4B,
        (byte) 0xD6, (byte) 0x32, (byte) 0xD8, (byte) 0xFD,
        (byte) 0x37, (byte) 0x71, (byte) 0xF1, (byte) 0xE1,
        (byte) 0x30, (byte) 0x0F, (byte) 0xF8, (byte) 0x1B,
        (byte) 0x87, (byte) 0xFA, (byte) 0x06, (byte) 0x3F,
        (byte) 0x5E, (byte) 0xBA, (byte) 0xAE, (byte) 0x5B,
        (byte) 0x8A, (byte) 0x00, (byte) 0xBC, (byte) 0x9D,
        (byte) 0x6D, (byte) 0xC1, (byte) 0xB1, (byte) 0x0E,
        (byte) 0x80, (byte) 0x5D, (byte) 0xD2, (byte) 0xD5,
        (byte) 0xA0, (byte) 0x84, (byte) 0x07, (byte) 0x14,
        (byte) 0xB5, (byte) 0x90, (byte) 0x2C, (byte) 0xA3,
        (byte) 0xB2, (byte) 0x73, (byte) 0x4C, (byte) 0x54,
        (byte) 0x92, (byte) 0x74, (byte) 0x36, (byte) 0x51,
        (byte) 0x38, (byte) 0xB0, (byte) 0xBD, (byte) 0x5A,
        (byte) 0xFC, (byte) 0x60, (byte) 0x62, (byte) 0x96,
        (byte) 0x6C, (byte) 0x42, (byte) 0xF7, (byte) 0x10,
        (byte) 0x7C, (byte) 0x28, (byte) 0x27, (byte) 0x8C,
        (byte) 0x13, (byte) 0x95, (byte) 0x9C, (byte) 0xC7,
        (byte) 0x24, (byte) 0x46, (byte) 0x3B, (byte) 0x70,
        (byte) 0xCA, (byte) 0xE3, (byte) 0x85, (byte) 0xCB,
        (byte) 0x11, (byte) 0xD0, (byte) 0x93, (byte) 0xB8,
        (byte) 0xA6, (byte) 0x83, (byte) 0x20, (byte) 0xFF,
        (byte) 0x9F, (byte) 0x77, (byte) 0xC3, (byte) 0xCC,
        (byte) 0x03, (byte) 0x6F, (byte) 0x08, (byte) 0xBF,
        (byte) 0x40, (byte) 0xE7, (byte) 0x2B, (byte) 0xE2,
        (byte) 0x79, (byte) 0x0C, (byte) 0xAA, (byte) 0x82,
        (byte) 0x41, (byte) 0x3A, (byte) 0xEA, (byte) 0xB9,
        (byte) 0xE4, (byte) 0x9A, (byte) 0xA4, (byte) 0x97,
        (byte) 0x7E, (byte) 0xDA, (byte) 0x7A, (byte) 0x17,
        (byte) 0x66, (byte) 0x94, (byte) 0xA1, (byte) 0x1D,
        (byte) 0x3D, (byte) 0xF0, (byte) 0xDE, (byte) 0xB3,
        (byte) 0x0B, (byte) 0x72, (byte) 0xA7, (byte) 0x1C,
        (byte) 0xEF, (byte) 0xD1, (byte) 0x53, (byte) 0x3E,
        (byte) 0x8F, (byte) 0x33, (byte) 0x26, (byte) 0x5F,
        (byte) 0xEC, (byte) 0x76, (byte) 0x2A, (byte) 0x49,
        (byte) 0x81, (byte) 0x88, (byte) 0xEE, (byte) 0x21,
        (byte) 0xC4, (byte) 0x1A, (byte) 0xEB, (byte) 0xD9,
        (byte) 0xC5, (byte) 0x39, (byte) 0x99, (byte) 0xCD,
        (byte) 0xAD, (byte) 0x31, (byte) 0x8B, (byte) 0x01,
        (byte) 0x18, (byte) 0x23, (byte) 0xDD, (byte) 0x1F,
        (byte) 0x4E, (byte) 0x2D, (byte) 0xF9, (byte) 0x48,
        (byte) 0x4F, (byte) 0xF2, (byte) 0x65, (byte) 0x8E,
        (byte) 0x78, (byte) 0x5C, (byte) 0x58, (byte) 0x19,
        (byte) 0x8D, (byte) 0xE5, (byte) 0x98, (byte) 0x57,
        (byte) 0x67, (byte) 0x7F, (byte) 0x05, (byte) 0x64,
        (byte) 0xAF, (byte) 0x63, (byte) 0xB6, (byte) 0xFE,
        (byte) 0xF5, (byte) 0xB7, (byte) 0x3C, (byte) 0xA5,
        (byte) 0xCE, (byte) 0xE9, (byte) 0x68, (byte) 0x44,
        (byte) 0xE0, (byte) 0x4D, (byte) 0x43, (byte) 0x69,
        (byte) 0x29, (byte) 0x2E, (byte) 0xAC, (byte) 0x15,
        (byte) 0x59, (byte) 0xA8, (byte) 0x0A, (byte) 0x9E,
        (byte) 0x6E, (byte) 0x47, (byte) 0xDF, (byte) 0x34,
        (byte) 0x35, (byte) 0x6A, (byte) 0xCF, (byte) 0xDC,
        (byte) 0x22, (byte) 0xC9, (byte) 0xC0, (byte) 0x9B,
        (byte) 0x89, (byte) 0xD4, (byte) 0xED, (byte) 0xAB,
        (byte) 0x12, (byte) 0xA2, (byte) 0x0D, (byte) 0x52,
        (byte) 0xBB, (byte) 0x02, (byte) 0x2F, (byte) 0xA9,
        (byte) 0xD7, (byte) 0x61, (byte) 0x1E, (byte) 0xB4,
        (byte) 0x50, (byte) 0x04, (byte) 0xF6, (byte) 0xC2,
        (byte) 0x16, (byte) 0x25, (byte) 0x86, (byte) 0x56,
        (byte) 0x55, (byte) 0x09, (byte) 0xBE, (byte) 0x91  }
    };

    /**
    * Define the fixed p0/p1 permutations used in keyed S-box lookup.
    * By changing the following constant definitions, the S-boxes will
    * automatically get changed in the Twofish engine.
    */
    private static final int P_00 = 1;
    private static final int P_01 = 0;
    private static final int P_02 = 0;
    private static final int P_03 = P_01 ^ 1;
    private static final int P_04 = 1;

    private static final int P_10 = 0;
    private static final int P_11 = 0;
    private static final int P_12 = 1;
    private static final int P_13 = P_11 ^ 1;
    private static final int P_14 = 0;

    private static final int P_20 = 1;
    private static final int P_21 = 1;
    private static final int P_22 = 0;
    private static final int P_23 = P_21 ^ 1;
    private static final int P_24 = 0;

    private static final int P_30 = 0;
    private static final int P_31 = 1;
    private static final int P_32 = 1;
    private static final int P_33 = P_31 ^ 1;
    private static final int P_34 = 1;

    /* Primitive polynomial for GF(256) */
    private static final int GF256_FDBK =   0x169;
    private static final int GF256_FDBK_2 = GF256_FDBK / 2;
    private static final int GF256_FDBK_4 = GF256_FDBK / 4;

    private static final int RS_GF_FDBK = 0x14D; // field generator

    //====================================
    // Useful constants
    //====================================

    private static final int    ROUNDS = 16;
    private static final int    MAX_ROUNDS = 16;  // bytes = 128 bits
    private static final int    BLOCK_SIZE = 16;  // bytes = 128 bits
    private static final int    MAX_KEY_BITS = 256;

    private static final int    INPUT_WHITEN=0;
    private static final int    OUTPUT_WHITEN=INPUT_WHITEN+BLOCK_SIZE/4; // 4
    private static final int    ROUND_SUBKEYS=OUTPUT_WHITEN+BLOCK_SIZE/4;// 8

    private static final int    TOTAL_SUBKEYS=ROUND_SUBKEYS+2*MAX_ROUNDS;// 40

    private static final int    SK_STEP = 0x02020202;
    private static final int    SK_BUMP = 0x01010101;
    private static final int    SK_ROTL = 9;

    private boolean encrypting = false;

    private int[] gMDS0 = new int[MAX_KEY_BITS];
    private int[] gMDS1 = new int[MAX_KEY_BITS];
    private int[] gMDS2 = new int[MAX_KEY_BITS];
    private int[] gMDS3 = new int[MAX_KEY_BITS];

    /**
     * gSubKeys[] and gSBox[] are eventually used in the 
     * encryption and decryption methods.
     */
    private int[] gSubKeys;
    private int[] gSBox;

    private int k64Cnt = 0;

    private byte[] workingKey = null;

    public TwofishEngine()
    {
        CryptoServicesRegistrar.checkConstraints(new DefaultServiceProperties(getAlgorithmName(), 256));

        // calculate the MDS matrix
        int[] m1 = new int[2];
        int[] mX = new int[2];
        int[] mY = new int[2];
        int j;

        for (int i=0; i< MAX_KEY_BITS ; i++)
        {
            j = P[0][i] & 0xff;
            m1[0] = j;
            mX[0] = Mx_X(j) & 0xff;
            mY[0] = Mx_Y(j) & 0xff;

            j = P[1][i] & 0xff;
            m1[1] = j;
            mX[1] = Mx_X(j) & 0xff;
            mY[1] = Mx_Y(j) & 0xff;

            gMDS0[i] = m1[P_00]       | mX[P_00] <<  8 |
                         mY[P_00] << 16 | mY[P_00] << 24;

            gMDS1[i] = mY[P_10]       | mY[P_10] <<  8 |
                         mX[P_10] << 16 | m1[P_10] << 24;

            gMDS2[i] = mX[P_20]       | mY[P_20] <<  8 |
                         m1[P_20] << 16 | mY[P_20] << 24;

            gMDS3[i] = mX[P_30]       | m1[P_30] <<  8 |
                         mY[P_30] << 16 | mX[P_30] << 24;
        }
    }

    /**
     * initialise a Twofish cipher.
     *
     * @param encrypting whether or not we are for encryption.
     * @param params the parameters required to set up the cipher.
     * @exception IllegalArgumentException if the params argument is
     * inappropriate.
     */
    public void init(
        boolean             encrypting,
        CipherParameters    params)
    {
        if (params instanceof KeyParameter)
        {
            this.encrypting = encrypting;
            this.workingKey = ((KeyParameter)params).getKey();

            int keyBits = this.workingKey.length * 8;
            switch (keyBits)
            {
            case 128:
            case 192:
            case 256:
                break;
            default:
                throw new IllegalArgumentException("Key length not 128/192/256 bits.");
            }

            CryptoServicesRegistrar.checkConstraints(new DefaultServiceProperties(getAlgorithmName(), keyBits, params, Utils.getPurpose(encrypting)));

            this.k64Cnt = this.workingKey.length / 8;
            setKey(this.workingKey);

            return;
        }

        throw new IllegalArgumentException("invalid parameter passed to Twofish init - " + params.getClass().getName());
    }

    public String getAlgorithmName()
    {
        return "Twofish";
    }

    public int processBlock(
        byte[] in,
        int inOff,
        byte[] out,
        int outOff)
    {
        if (workingKey == null)
        {
            throw new IllegalStateException("Twofish not initialised");
        }

        if ((inOff + BLOCK_SIZE) > in.length)
        {
            throw new DataLengthException("input buffer too short");
        }

        if ((outOff + BLOCK_SIZE) > out.length)
        {
            throw new OutputLengthException("output buffer too short");
        }

        if (encrypting)
        {
            encryptBlock(in, inOff, out, outOff);
        }
        else
        {    
            decryptBlock(in, inOff, out, outOff);
        }

        return BLOCK_SIZE;
    }

    public void reset()
    {
        if (this.workingKey != null)
        {
            setKey(this.workingKey);
        }
    }

    public int getBlockSize()
    {
        return BLOCK_SIZE;
    }

    //==================================
    // Private Implementation
    //==================================

    private void setKey(byte[] key)
    {
        int[] k32e = new int[MAX_KEY_BITS/64]; // 4
        int[] k32o = new int[MAX_KEY_BITS/64]; // 4 

        int[] sBoxKeys = new int[MAX_KEY_BITS/64]; // 4 
        gSubKeys = new int[TOTAL_SUBKEYS];

        /*
         * k64Cnt is the number of 8 byte blocks (64 chunks) that are in the input key.
         * The input key is 16, 24 or 32 bytes, so the range for k64Cnt is 2..4
         */
        for (int i=0; i>> (32-SK_ROTL);
        }

        /*
         * fully expand the table for speed
         */
        int k0 = sBoxKeys[0];
        int k1 = sBoxKeys[1];
        int k2 = sBoxKeys[2];
        int k3 = sBoxKeys[3];
        int b0, b1, b2, b3;
        gSBox = new int[4*MAX_KEY_BITS];
        for (int i=0; i
     * 
     * g(x) = x^4 + (a+1/a)x^3 + ax^2 + (a+1/a)x + 1
     * 
* where a = primitive root of field generator 0x14D */ private int RS_rem(int x) { int b = (x >>> 24) & 0xff; int g2 = ((b << 1) ^ ((b & 0x80) != 0 ? RS_GF_FDBK : 0)) & 0xff; int g3 = ((b >>> 1) ^ ((b & 0x01) != 0 ? (RS_GF_FDBK >>> 1) : 0)) ^ g2 ; return ((x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b); } private int LFSR1(int x) { return (x >> 1) ^ (((x & 0x01) != 0) ? GF256_FDBK_2 : 0); } private int LFSR2(int x) { return (x >> 2) ^ (((x & 0x02) != 0) ? GF256_FDBK_2 : 0) ^ (((x & 0x01) != 0) ? GF256_FDBK_4 : 0); } private int Mx_X(int x) { return x ^ LFSR2(x); } // 5B private int Mx_Y(int x) { return x ^ LFSR1(x) ^ LFSR2(x); } // EF private int b0(int x) { return x & 0xff; } private int b1(int x) { return (x >>> 8) & 0xff; } private int b2(int x) { return (x >>> 16) & 0xff; } private int b3(int x) { return (x >>> 24) & 0xff; } private int Fe32_0(int x) { return gSBox[ 0x000 + 2*(x & 0xff) ] ^ gSBox[ 0x001 + 2*((x >>> 8) & 0xff) ] ^ gSBox[ 0x200 + 2*((x >>> 16) & 0xff) ] ^ gSBox[ 0x201 + 2*((x >>> 24) & 0xff) ]; } private int Fe32_3(int x) { return gSBox[ 0x000 + 2*((x >>> 24) & 0xff) ] ^ gSBox[ 0x001 + 2*(x & 0xff) ] ^ gSBox[ 0x200 + 2*((x >>> 8) & 0xff) ] ^ gSBox[ 0x201 + 2*((x >>> 16) & 0xff) ]; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy