All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.engines.XTEAEngine Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.

The newest version!
package org.bouncycastle.crypto.engines;

import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.DataLengthException;
import org.bouncycastle.crypto.OutputLengthException;
import org.bouncycastle.crypto.constraints.DefaultServiceProperties;
import org.bouncycastle.crypto.params.KeyParameter;

/**
 * An XTEA engine.
 */
public class XTEAEngine
    implements BlockCipher
{
    private static final int rounds     = 32,
                             block_size = 8,
//                             key_size   = 16,
                             delta      = 0x9E3779B9;

    /*
     * the expanded key array of 4 subkeys
     */
    private int[]   _S    = new int[4],
                    _sum0 = new int[32],
                    _sum1 = new int[32];
    private boolean _initialised,
                    _forEncryption;

    /**
     * Create an instance of the TEA encryption algorithm
     * and set some defaults
     */
    public XTEAEngine()
    {
        _initialised = false;
    }

    public String getAlgorithmName()
    {
        return "XTEA";
    }

    public int getBlockSize()
    {
        return block_size;
    }

    /**
     * initialise
     *
     * @param forEncryption whether or not we are for encryption.
     * @param params the parameters required to set up the cipher.
     * @exception IllegalArgumentException if the params argument is
     * inappropriate.
     */
    public void init(
        boolean             forEncryption,
        CipherParameters    params)
    {
        if (!(params instanceof KeyParameter))
        {
            throw new IllegalArgumentException("invalid parameter passed to TEA init - " + params.getClass().getName());
        }

        _forEncryption = forEncryption;
        _initialised = true;

        KeyParameter       p = (KeyParameter)params;

        setKey(p.getKey());
        CryptoServicesRegistrar.checkConstraints(new DefaultServiceProperties(
                    this.getAlgorithmName(), 128, params, Utils.getPurpose(forEncryption)));
    }

    public int processBlock(
        byte[]  in,
        int     inOff,
        byte[]  out,
        int     outOff)
    {
        if (!_initialised)
        {
            throw new IllegalStateException(getAlgorithmName()+" not initialised");
        }

        if ((inOff + block_size) > in.length)
        {
            throw new DataLengthException("input buffer too short");
        }

        if ((outOff + block_size) > out.length)
        {
            throw new OutputLengthException("output buffer too short");
        }

        return (_forEncryption) ? encryptBlock(in, inOff, out, outOff)
                                    : decryptBlock(in, inOff, out, outOff);
    }

    public void reset()
    {
    }

    /**
     * Re-key the cipher.
     * 

* @param key the key to be used */ private void setKey( byte[] key) { if (key.length != 16) { throw new IllegalArgumentException("Key size must be 128 bits."); } int i, j; for (i = j = 0; i < 4; i++,j+=4) { _S[i] = bytesToInt(key, j); } for (i = j = 0; i < rounds; i++) { _sum0[i] = (j + _S[j & 3]); j += delta; _sum1[i] = (j + _S[j >>> 11 & 3]); } } private int encryptBlock( byte[] in, int inOff, byte[] out, int outOff) { // Pack bytes into integers int v0 = bytesToInt(in, inOff); int v1 = bytesToInt(in, inOff + 4); for (int i = 0; i < rounds; i++) { v0 += ((v1 << 4 ^ v1 >>> 5) + v1) ^ _sum0[i]; v1 += ((v0 << 4 ^ v0 >>> 5) + v0) ^ _sum1[i]; } unpackInt(v0, out, outOff); unpackInt(v1, out, outOff + 4); return block_size; } private int decryptBlock( byte[] in, int inOff, byte[] out, int outOff) { // Pack bytes into integers int v0 = bytesToInt(in, inOff); int v1 = bytesToInt(in, inOff + 4); for (int i = rounds-1; i >= 0; i--) { v1 -= ((v0 << 4 ^ v0 >>> 5) + v0) ^ _sum1[i]; v0 -= ((v1 << 4 ^ v1 >>> 5) + v1) ^ _sum0[i]; } unpackInt(v0, out, outOff); unpackInt(v1, out, outOff + 4); return block_size; } private int bytesToInt(byte[] in, int inOff) { return ((in[inOff++]) << 24) | ((in[inOff++] & 255) << 16) | ((in[inOff++] & 255) << 8) | ((in[inOff] & 255)); } private void unpackInt(int v, byte[] out, int outOff) { out[outOff++] = (byte)(v >>> 24); out[outOff++] = (byte)(v >>> 16); out[outOff++] = (byte)(v >>> 8); out[outOff ] = (byte)v; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy