All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.modes.gcm.Tables8kGCMMultiplier Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.

The newest version!
package org.bouncycastle.crypto.modes.gcm;

import org.bouncycastle.util.Pack;

public class Tables8kGCMMultiplier
    implements GCMMultiplier
{
    private byte[] H;
    private long[][][] T;

    public void init(byte[] H)
    {
        if (T == null)
        {
            T = new long[2][256][2];
        }
        else if (0 != GCMUtil.areEqual(this.H, H))
        {
            return;
        }

        this.H = new byte[GCMUtil.SIZE_BYTES];
        GCMUtil.copy(H, this.H);

        for (int i = 0; i < 2; ++i)
        {
            long[][] t = T[i];

            // t[0] = 0

            if (i == 0)
            {
                // t[1] = H.p^7
                GCMUtil.asLongs(this.H, t[1]);
                GCMUtil.multiplyP7(t[1], t[1]);
            }
            else
            {
                // t[1] = T[i-1][1].p^8
                GCMUtil.multiplyP8(T[i - 1][1], t[1]);
            }

            for (int n = 2; n < 256; n += 2)
            {
                // t[2.n] = t[n].p^-1
                GCMUtil.divideP(t[n >> 1], t[n]);

                // t[2.n + 1] = t[2.n] + t[1]
                GCMUtil.xor(t[n], t[1], t[n + 1]);
            }
        }
    }

    public void multiplyH(byte[] x)
    {
        long[][] T0 = T[0], T1 = T[1];

//        long[] z = new long[2];
//        for (int i = 14; i >= 0; i -= 2)
//        {
//            GCMUtil.multiplyP16(z);
//            GCMUtil.xor(z, T0[x[i] & 0xFF]);
//            GCMUtil.xor(z, T1[x[i + 1] & 0xFF]);
//        }
//        Pack.longToBigEndian(z, x, 0);

        long[] u = T0[x[14] & 0xFF];
        long[] v = T1[x[15] & 0xFF];
        long z0 = u[0] ^ v[0], z1 = u[1] ^ v[1];

        for (int i = 12; i >= 0; i -= 2)
        {
            u = T0[x[i] & 0xFF];
            v = T1[x[i + 1] & 0xFF];

            long c = z1 << 48;
            z1 = u[1] ^ v[1] ^ ((z1 >>> 16) | (z0 << 48));
            z0 = u[0] ^ v[0] ^ (z0 >>> 16) ^ c ^ (c >>> 1) ^ (c >>> 2) ^ (c >>> 7);
        }

        Pack.longToBigEndian(z0, x, 0);
        Pack.longToBigEndian(z1, x, 8);
   }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy