All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.prng.drbg.DualECSP800DRBG Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.

The newest version!
package org.bouncycastle.crypto.prng.drbg;

import java.math.BigInteger;

import org.bouncycastle.asn1.nist.NISTNamedCurves;
import org.bouncycastle.crypto.Digest;
import org.bouncycastle.crypto.prng.EntropySource;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECMultiplier;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.ec.FixedPointCombMultiplier;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.BigIntegers;

/**
 * A SP800-90A Dual EC DRBG.
 */
public class DualECSP800DRBG
    implements SP80090DRBG
{
    /*
     * Default P, Q values for each curve
     */
    private static final BigInteger p256_Px = new BigInteger("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16);
    private static final BigInteger p256_Py = new BigInteger("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16);
    private static final BigInteger p256_Qx = new BigInteger("c97445f45cdef9f0d3e05e1e585fc297235b82b5be8ff3efca67c59852018192", 16);
    private static final BigInteger p256_Qy = new BigInteger("b28ef557ba31dfcbdd21ac46e2a91e3c304f44cb87058ada2cb815151e610046", 16);

    private static final BigInteger p384_Px = new BigInteger("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7", 16);
    private static final BigInteger p384_Py = new BigInteger("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f", 16);
    private static final BigInteger p384_Qx = new BigInteger("8e722de3125bddb05580164bfe20b8b432216a62926c57502ceede31c47816edd1e89769124179d0b695106428815065", 16);
    private static final BigInteger p384_Qy = new BigInteger("023b1660dd701d0839fd45eec36f9ee7b32e13b315dc02610aa1b636e346df671f790f84c5e09b05674dbb7e45c803dd", 16);

    private static final BigInteger p521_Px = new BigInteger("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66", 16);
    private static final BigInteger p521_Py = new BigInteger("11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650", 16);
    private static final BigInteger p521_Qx = new BigInteger("1b9fa3e518d683c6b65763694ac8efbaec6fab44f2276171a42726507dd08add4c3b3f4c1ebc5b1222ddba077f722943b24c3edfa0f85fe24d0c8c01591f0be6f63", 16);
    private static final BigInteger p521_Qy = new BigInteger("1f3bdba585295d9a1110d1df1f9430ef8442c5018976ff3437ef91b81dc0b8132c8d5c39c32d0e004a3092b7d327c0e7a4d26d2c7b69b58f9066652911e457779de", 16);

    private static final DualECPoints[] nistPoints;

    static
    {
        nistPoints = new DualECPoints[3];

        ECCurve.Fp curve = (ECCurve.Fp)NISTNamedCurves.getByNameLazy("P-256").getCurve();

        nistPoints[0] = new DualECPoints(128, curve.createPoint(p256_Px, p256_Py), curve.createPoint(p256_Qx, p256_Qy), 1);

        curve = (ECCurve.Fp)NISTNamedCurves.getByNameLazy("P-384").getCurve();

        nistPoints[1] = new DualECPoints(192, curve.createPoint(p384_Px, p384_Py), curve.createPoint(p384_Qx, p384_Qy), 1);

        curve = (ECCurve.Fp)NISTNamedCurves.getByNameLazy("P-521").getCurve();

        nistPoints[2] = new DualECPoints(256, curve.createPoint(p521_Px, p521_Py), curve.createPoint(p521_Qx, p521_Qy), 1);
    }


    private static final long       RESEED_MAX = 1L << (32 - 1);
    private static final int        MAX_ADDITIONAL_INPUT = 1 << (13 - 1);
    private static final int        MAX_ENTROPY_LENGTH = 1 << (13 - 1);
    private static final int        MAX_PERSONALIZATION_STRING = 1 << (13 -1);

    private Digest                 _digest;
    private long                   _reseedCounter;
    private EntropySource          _entropySource;
    private int                    _securityStrength;
    private int                    _seedlen;
    private int                    _outlen;
    private ECCurve.Fp             _curve;
    private ECPoint                _P;
    private ECPoint                _Q;
    private byte[]                 _s;
    private int                    _sLength;
    private ECMultiplier           _fixedPointMultiplier = new FixedPointCombMultiplier();

    /**
     * Construct a SP800-90A Dual EC DRBG.
     * 

* Minimum entropy requirement is the security strength requested. *

* @param digest source digest to use with the DRB stream. * @param securityStrength security strength required (in bits) * @param entropySource source of entropy to use for seeding/reseeding. * @param personalizationString personalization string to distinguish this DRBG (may be null). * @param nonce nonce to further distinguish this DRBG (may be null). */ public DualECSP800DRBG(Digest digest, int securityStrength, EntropySource entropySource, byte[] personalizationString, byte[] nonce) { this(nistPoints, digest, securityStrength, entropySource, personalizationString, nonce); } /** * Construct a SP800-90A Dual EC DRBG. *

* Minimum entropy requirement is the security strength requested. *

* @param pointSet an array of points to choose from, in order of increasing security strength * @param digest source digest to use with the DRB stream. * @param securityStrength security strength required (in bits) * @param entropySource source of entropy to use for seeding/reseeding. * @param personalizationString personalization string to distinguish this DRBG (may be null). * @param nonce nonce to further distinguish this DRBG (may be null). */ public DualECSP800DRBG(DualECPoints[] pointSet, Digest digest, int securityStrength, EntropySource entropySource, byte[] personalizationString, byte[] nonce) { _digest = digest; _entropySource = entropySource; _securityStrength = securityStrength; if (Utils.isTooLarge(personalizationString, MAX_PERSONALIZATION_STRING / 8)) { throw new IllegalArgumentException("Personalization string too large"); } if (entropySource.entropySize() < securityStrength || entropySource.entropySize() > MAX_ENTROPY_LENGTH) { throw new IllegalArgumentException("EntropySource must provide between " + securityStrength + " and " + MAX_ENTROPY_LENGTH + " bits"); } byte[] entropy = getEntropy(); byte[] seedMaterial = Arrays.concatenate(entropy, nonce, personalizationString); for (int i = 0; i != pointSet.length; i++) { if (securityStrength <= pointSet[i].getSecurityStrength()) { if (Utils.getMaxSecurityStrength(digest) < pointSet[i].getSecurityStrength()) { throw new IllegalArgumentException("Requested security strength is not supported by digest"); } _seedlen = pointSet[i].getSeedLen(); _outlen = pointSet[i].getMaxOutlen() / 8; _P = pointSet[i].getP(); _Q = pointSet[i].getQ(); break; } } if (_P == null) { throw new IllegalArgumentException("security strength cannot be greater than 256 bits"); } _s = Utils.hash_df(_digest, seedMaterial, _seedlen); _sLength = _s.length; _reseedCounter = 0; } /** * Return the block size (in bits) of the DRBG. * * @return the number of bits produced on each internal round of the DRBG. */ public int getBlockSize() { return _outlen * 8; } /** * Populate a passed in array with random data. * * @param output output array for generated bits. * @param additionalInput additional input to be added to the DRBG in this step. * @param predictionResistant true if a reseed should be forced, false otherwise. * * @return number of bits generated, -1 if a reseed required. */ public int generate(byte[] output, byte[] additionalInput, boolean predictionResistant) { int numberOfBits = output.length*8; int m = output.length / _outlen; if (Utils.isTooLarge(additionalInput, MAX_ADDITIONAL_INPUT / 8)) { throw new IllegalArgumentException("Additional input too large"); } if (_reseedCounter + m > RESEED_MAX) { return -1; } if (predictionResistant) { reseed(additionalInput); additionalInput = null; } BigInteger s; if (additionalInput != null) { // Note: we ignore the use of pad8 on the additional input as we mandate byte arrays for it. additionalInput = Utils.hash_df(_digest, additionalInput, _seedlen); s = new BigInteger(1, xor(_s, additionalInput)); } else { s = new BigInteger(1, _s); } // make sure we start with a clean output array. Arrays.fill(output, (byte)0); int outOffset = 0; for (int i = 0; i < m; i++) { s = getScalarMultipleXCoord(_P, s); //System.err.println("S: " + new String(Hex.encode(_s))); byte[] r = getScalarMultipleXCoord(_Q, s).toByteArray(); if (r.length > _outlen) { System.arraycopy(r, r.length - _outlen, output, outOffset, _outlen); } else { System.arraycopy(r, 0, output, outOffset + (_outlen - r.length), r.length); } //System.err.println("R: " + new String(Hex.encode(r))); outOffset += _outlen; _reseedCounter++; } if (outOffset < output.length) { s = getScalarMultipleXCoord(_P, s); byte[] r = getScalarMultipleXCoord(_Q, s).toByteArray(); int required = output.length - outOffset; if (r.length > _outlen) { System.arraycopy(r, r.length - _outlen, output, outOffset, required); } else { System.arraycopy(r, 0, output, outOffset + (_outlen - r.length), required); } _reseedCounter++; } // Need to preserve length of S as unsigned int. _s = BigIntegers.asUnsignedByteArray(_sLength, getScalarMultipleXCoord(_P, s)); return numberOfBits; } /** * Reseed the DRBG. * * @param additionalInput additional input to be added to the DRBG in this step. */ public void reseed(byte[] additionalInput) { if (Utils.isTooLarge(additionalInput, MAX_ADDITIONAL_INPUT / 8)) { throw new IllegalArgumentException("Additional input string too large"); } byte[] entropy = getEntropy(); byte[] seedMaterial = Arrays.concatenate(pad8(_s, _seedlen), entropy, additionalInput); _s = Utils.hash_df(_digest, seedMaterial, _seedlen); _reseedCounter = 0; } private byte[] getEntropy() { byte[] entropy = _entropySource.getEntropy(); if (entropy.length < (_securityStrength + 7) / 8) { throw new IllegalStateException("Insufficient entropy provided by entropy source"); } return entropy; } private byte[] xor(byte[] a, byte[] b) { if (b == null) { return a; } byte[] rv = new byte[a.length]; for (int i = 0; i != rv.length; i++) { rv[i] = (byte)(a[i] ^ b[i]); } return rv; } // Note: works in place private byte[] pad8(byte[] s, int seedlen) { if (seedlen % 8 == 0) { return s; } int shift = 8 - (seedlen % 8); int carry = 0; for (int i = s.length - 1; i >= 0; i--) { int b = s[i] & 0xff; s[i] = (byte)((b << shift) | (carry >> (8 - shift))); carry = b; } return s; } private BigInteger getScalarMultipleXCoord(ECPoint p, BigInteger s) { return _fixedPointMultiplier.multiply(p, s).normalize().getAffineXCoord().toBigInteger(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy