All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.signers.ECDSASigner Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.

The newest version!
package org.bouncycastle.crypto.signers;

import java.math.BigInteger;
import java.security.SecureRandom;

import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.DSAExt;
import org.bouncycastle.crypto.params.ECDomainParameters;
import org.bouncycastle.crypto.params.ECKeyParameters;
import org.bouncycastle.crypto.params.ECPrivateKeyParameters;
import org.bouncycastle.crypto.params.ECPublicKeyParameters;
import org.bouncycastle.crypto.params.ParametersWithRandom;
import org.bouncycastle.math.ec.ECAlgorithms;
import org.bouncycastle.math.ec.ECConstants;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.ec.ECMultiplier;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.ec.FixedPointCombMultiplier;
import org.bouncycastle.util.BigIntegers;

/**
 * EC-DSA as described in X9.62
 */
public class ECDSASigner
    implements ECConstants, DSAExt
{
    private final DSAKCalculator kCalculator;

    private ECKeyParameters key;
    private SecureRandom    random;

    /**
     * Default configuration, random K values.
     */
    public ECDSASigner()
    {
        this.kCalculator = new RandomDSAKCalculator();
    }

    /**
     * Configuration with an alternate, possibly deterministic calculator of K.
     *
     * @param kCalculator a K value calculator.
     */
    public ECDSASigner(DSAKCalculator kCalculator)
    {
        this.kCalculator = kCalculator;
    }

    public void init(
        boolean                 forSigning,
        CipherParameters        param)
    {
        SecureRandom providedRandom = null;

        if (forSigning)
        {
            if (param instanceof ParametersWithRandom)
            {
                ParametersWithRandom rParam = (ParametersWithRandom)param;

                this.key = (ECPrivateKeyParameters)rParam.getParameters();
                providedRandom = rParam.getRandom();
            }
            else
            {
                this.key = (ECPrivateKeyParameters)param;
            }
        }
        else
        {
            this.key = (ECPublicKeyParameters)param;
        }

        CryptoServicesRegistrar.checkConstraints(Utils.getDefaultProperties("ECDSA", key, forSigning));

        this.random = initSecureRandom(forSigning && !kCalculator.isDeterministic(), providedRandom);
    }

    public BigInteger getOrder()
    {
        return key.getParameters().getN();
    }

    // 5.3 pg 28
    /**
     * generate a signature for the given message using the key we were
     * initialised with. For conventional DSA the message should be a SHA-1
     * hash of the message of interest.
     *
     * @param message the message that will be verified later.
     */
    public BigInteger[] generateSignature(
        byte[] message)
    {
        ECDomainParameters ec = key.getParameters();
        BigInteger n = ec.getN();
        BigInteger e = calculateE(n, message);
        BigInteger d = ((ECPrivateKeyParameters)key).getD();

        if (kCalculator.isDeterministic())
        {
            kCalculator.init(n, d, message);
        }
        else
        {
            kCalculator.init(n, random);
        }

        BigInteger r, s;

        ECMultiplier basePointMultiplier = createBasePointMultiplier();

        // 5.3.2
        do // generate s
        {
            BigInteger k;
            do // generate r
            {
                k = kCalculator.nextK();

                ECPoint p = basePointMultiplier.multiply(ec.getG(), k).normalize();

                // 5.3.3
                r = p.getAffineXCoord().toBigInteger().mod(n);
            }
            while (r.equals(ZERO));

            s = BigIntegers.modOddInverse(n, k).multiply(e.add(d.multiply(r))).mod(n);
        }
        while (s.equals(ZERO));

        return new BigInteger[]{ r, s };
    }

    // 5.4 pg 29
    /**
     * return true if the value r and s represent a DSA signature for
     * the passed in message (for standard DSA the message should be
     * a SHA-1 hash of the real message to be verified).
     */
    public boolean verifySignature(
        byte[]      message,
        BigInteger  r,
        BigInteger  s)
    {
        ECDomainParameters ec = key.getParameters();
        BigInteger n = ec.getN();
        BigInteger e = calculateE(n, message);

        // r in the range [1,n-1]
        if (r.compareTo(ONE) < 0 || r.compareTo(n) >= 0)
        {
            return false;
        }

        // s in the range [1,n-1]
        if (s.compareTo(ONE) < 0 || s.compareTo(n) >= 0)
        {
            return false;
        }

        BigInteger c = BigIntegers.modOddInverseVar(n, s);

        BigInteger u1 = e.multiply(c).mod(n);
        BigInteger u2 = r.multiply(c).mod(n);

        ECPoint G = ec.getG();
        ECPoint Q = ((ECPublicKeyParameters)key).getQ();

        ECPoint point = ECAlgorithms.sumOfTwoMultiplies(G, u1, Q, u2);

        // components must be bogus.
        if (point.isInfinity())
        {
            return false;
        }

        /*
         * If possible, avoid normalizing the point (to save a modular inversion in the curve field).
         * 
         * There are ~cofactor elements of the curve field that reduce (modulo the group order) to 'r'.
         * If the cofactor is known and small, we generate those possible field values and project each
         * of them to the same "denominator" (depending on the particular projective coordinates in use)
         * as the calculated point.X. If any of the projected values matches point.X, then we have:
         *     (point.X / Denominator mod p) mod n == r
         * as required, and verification succeeds.
         * 
         * Based on an original idea by Gregory Maxwell (https://github.com/gmaxwell), as implemented in
         * the libsecp256k1 project (https://github.com/bitcoin/secp256k1).
         */
        ECCurve curve = point.getCurve();
        if (curve != null)
        {
            BigInteger cofactor = curve.getCofactor();
            if (cofactor != null && cofactor.compareTo(EIGHT) <= 0)
            {
                ECFieldElement D = getDenominator(curve.getCoordinateSystem(), point);
                if (D != null && !D.isZero())
                {
                    ECFieldElement X = point.getXCoord();
                    while (curve.isValidFieldElement(r))
                    {
                        ECFieldElement R = curve.fromBigInteger(r).multiply(D);
                        if (R.equals(X))
                        {
                            return true;
                        }
                        r = r.add(n);
                    }
                    return false;
                }
            }
        }

        BigInteger v = point.normalize().getAffineXCoord().toBigInteger().mod(n);
        return v.equals(r);
    }

    protected BigInteger calculateE(BigInteger n, byte[] message)
    {
        int log2n = n.bitLength();
        int messageBitLength = message.length * 8;

        BigInteger e = new BigInteger(1, message);
        if (log2n < messageBitLength)
        {
            e = e.shiftRight(messageBitLength - log2n);
        }
        return e;
    }

    protected ECMultiplier createBasePointMultiplier()
    {
        return new FixedPointCombMultiplier();
    }

    protected ECFieldElement getDenominator(int coordinateSystem, ECPoint p)
    {
        switch (coordinateSystem)
        {
        case ECCurve.COORD_HOMOGENEOUS:
        case ECCurve.COORD_LAMBDA_PROJECTIVE:
        case ECCurve.COORD_SKEWED:
            return p.getZCoord(0);
        case ECCurve.COORD_JACOBIAN:
        case ECCurve.COORD_JACOBIAN_CHUDNOVSKY:
        case ECCurve.COORD_JACOBIAN_MODIFIED:
            return p.getZCoord(0).square();
        default:
            return null;
        }
    }

    protected SecureRandom initSecureRandom(boolean needed, SecureRandom provided)
    {
        return needed ? CryptoServicesRegistrar.getSecureRandom(provided) : null;
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy