All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.math.ec.Tnaf Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.

The newest version!
package org.bouncycastle.math.ec;

import java.math.BigInteger;

import org.bouncycastle.util.BigIntegers;

/**
 * Class holding methods for point multiplication based on the window
 * τ-adic nonadjacent form (WTNAF). The algorithms are based on the
 * paper "Improved Algorithms for Arithmetic on Anomalous Binary Curves"
 * by Jerome A. Solinas. The paper first appeared in the Proceedings of
 * Crypto 1997.
 */
class Tnaf
{
    private static final BigInteger MINUS_ONE = ECConstants.ONE.negate();
    private static final BigInteger MINUS_TWO = ECConstants.TWO.negate();
    private static final BigInteger MINUS_THREE = ECConstants.THREE.negate();

    /**
     * The window width of WTNAF. The standard value of 4 is slightly less
     * than optimal for running time, but keeps space requirements for
     * precomputation low. For typical curves, a value of 5 or 6 results in
     * a better running time. When changing this value, the
     * αu's must be computed differently, see
     * e.g. "Guide to Elliptic Curve Cryptography", Darrel Hankerson,
     * Alfred Menezes, Scott Vanstone, Springer-Verlag New York Inc., 2004,
     * p. 121-122
     */
    public static final byte WIDTH = 4;

    /**
     * The αu's for a=0 as an array
     * of ZTauElements.
     */
    public static final ZTauElement[] alpha0 =
    {
        null, new ZTauElement(ECConstants.ONE, ECConstants.ZERO),
        null, new ZTauElement(MINUS_THREE, MINUS_ONE),
        null, new ZTauElement(MINUS_ONE, MINUS_ONE),
        null, new ZTauElement(ECConstants.ONE, MINUS_ONE),
        null, new ZTauElement(MINUS_ONE, ECConstants.ONE),
        null, new ZTauElement(ECConstants.ONE, ECConstants.ONE),
        null, new ZTauElement(ECConstants.THREE, ECConstants.ONE),
        null, new ZTauElement(MINUS_ONE, ECConstants.ZERO),
    };

    /**
     * The αu's for a=0 as an array
     * of TNAFs.
     */
    public static final byte[][] alpha0Tnaf = {
        null, {1}, null, {-1, 0, 1}, null, {1, 0, 1}, null, {-1, 0, 0, 1}
    };

    /**
     * The αu's for a=1 as an array
     * of ZTauElements.
     */
    public static final ZTauElement[] alpha1 =
    {
        null, new ZTauElement(ECConstants.ONE, ECConstants.ZERO),
        null, new ZTauElement(MINUS_THREE, ECConstants.ONE),
        null, new ZTauElement(MINUS_ONE, ECConstants.ONE),
        null, new ZTauElement(ECConstants.ONE, ECConstants.ONE),
        null, new ZTauElement(MINUS_ONE, MINUS_ONE),
        null, new ZTauElement(ECConstants.ONE, MINUS_ONE),
        null, new ZTauElement(ECConstants.THREE, MINUS_ONE),
        null, new ZTauElement(MINUS_ONE, ECConstants.ZERO),
    };

    /**
     * The αu's for a=1 as an array
     * of TNAFs.
     */
    public static final byte[][] alpha1Tnaf = {
        null, {1}, null, {-1, 0, 1}, null, {1, 0, 1}, null, {-1, 0, 0, -1}
    };

    /**
     * Computes the norm of an element λ of
     * Z[τ].
     * @param mu The parameter μ of the elliptic curve.
     * @param lambda The element λ of
     * Z[τ].
     * @return The norm of λ.
     */
    public static BigInteger norm(final byte mu, ZTauElement lambda)
    {
        // s1 = u^2
        BigInteger s1 = lambda.u.multiply(lambda.u);

        // s2 = u * v
//        BigInteger s2 = lambda.u.multiply(lambda.v);

        // s3 = 2 * v^2
//        BigInteger s3 = lambda.v.multiply(lambda.v).shiftLeft(1);

        if (mu == 1)
        {
//            return s1.add(s2).add(s3);
            return lambda.v.shiftLeft(1).add(lambda.u).multiply(lambda.v).add(s1);
        }
        else if (mu == -1)
        {
//            return s1.subtract(s2).add(s3);
            return lambda.v.shiftLeft(1).subtract(lambda.u).multiply(lambda.v).add(s1);
        }
        else
        {
            throw new IllegalArgumentException("mu must be 1 or -1");
        }
    }

    /**
     * Computes the norm of an element λ of
     * R[τ], where λ = u + vτ
     * and u and u are real numbers (elements of
     * R). 
     * @param mu The parameter μ of the elliptic curve.
     * @param u The real part of the element λ of
     * R[τ].
     * @param v The τ-adic part of the element
     * λ of R[τ].
     * @return The norm of λ.
     */
    public static SimpleBigDecimal norm(final byte mu, SimpleBigDecimal u,
            SimpleBigDecimal v)
    {
        SimpleBigDecimal norm;

        // s1 = u^2
        SimpleBigDecimal s1 = u.multiply(u);

        // s2 = u * v
        SimpleBigDecimal s2 = u.multiply(v);

        // s3 = 2 * v^2
        SimpleBigDecimal s3 = v.multiply(v).shiftLeft(1);

        if (mu == 1)
        {
            norm = s1.add(s2).add(s3);
        }
        else if (mu == -1)
        {
            norm = s1.subtract(s2).add(s3);
        }
        else
        {
            throw new IllegalArgumentException("mu must be 1 or -1");
        }

        return norm;
    }

    /**
     * Rounds an element λ of R[τ]
     * to an element of Z[τ], such that their difference
     * has minimal norm. λ is given as
     * λ = λ0 + λ1τ.
     * @param lambda0 The component λ0.
     * @param lambda1 The component λ1.
     * @param mu The parameter μ of the elliptic curve. Must
     * equal 1 or -1.
     * @return The rounded element of Z[τ].
     * @throws IllegalArgumentException if lambda0 and
     * lambda1 do not have same scale.
     */
    public static ZTauElement round(SimpleBigDecimal lambda0,
            SimpleBigDecimal lambda1, byte mu)
    {
        int scale = lambda0.getScale();
        if (lambda1.getScale() != scale)
        {
            throw new IllegalArgumentException("lambda0 and lambda1 do not " +
                    "have same scale");
        }

        if (!((mu == 1) || (mu == -1)))
        {
            throw new IllegalArgumentException("mu must be 1 or -1");
        }

        BigInteger f0 = lambda0.round();
        BigInteger f1 = lambda1.round();

        SimpleBigDecimal eta0 = lambda0.subtract(f0);
        SimpleBigDecimal eta1 = lambda1.subtract(f1);

        // eta = 2*eta0 + mu*eta1
        SimpleBigDecimal eta = eta0.add(eta0);
        if (mu == 1)
        {
            eta = eta.add(eta1);
        }
        else
        {
            // mu == -1
            eta = eta.subtract(eta1);
        }

        // check1 = eta0 - 3*mu*eta1
        // check2 = eta0 + 4*mu*eta1
        SimpleBigDecimal threeEta1 = eta1.add(eta1).add(eta1);
        SimpleBigDecimal fourEta1 = threeEta1.add(eta1);
        SimpleBigDecimal check1;
        SimpleBigDecimal check2;
        if (mu == 1)
        {
            check1 = eta0.subtract(threeEta1);
            check2 = eta0.add(fourEta1);
        }
        else
        {
            // mu == -1
            check1 = eta0.add(threeEta1);
            check2 = eta0.subtract(fourEta1);
        }

        byte h0 = 0;
        byte h1 = 0;

        // if eta >= 1
        if (eta.compareTo(ECConstants.ONE) >= 0)
        {
            if (check1.compareTo(MINUS_ONE) < 0)
            {
                h1 = mu;
            }
            else
            {
                h0 = 1;
            }
        }
        else
        {
            // eta < 1
            if (check2.compareTo(ECConstants.TWO) >= 0)
            {
                h1 = mu;
            }
        }

        // if eta < -1
        if (eta.compareTo(MINUS_ONE) < 0)
        {
            if (check1.compareTo(ECConstants.ONE) >= 0)
            {
                h1 = (byte)-mu;
            }
            else
            {
                h0 = -1;
            }
        }
        else
        {
            // eta >= -1
            if (check2.compareTo(MINUS_TWO) < 0)
            {
                h1 = (byte)-mu;
            }
        }

        BigInteger q0 = f0.add(BigInteger.valueOf(h0));
        BigInteger q1 = f1.add(BigInteger.valueOf(h1));
        return new ZTauElement(q0, q1);
    }

    /**
     * Approximate division by n. For an integer
     * k, the value λ = s k / n is
     * computed to c bits of accuracy.
     * @param k The parameter k.
     * @param s The curve parameter s0 or
     * s1.
     * @param vm The Lucas Sequence element Vm.
     * @param a The parameter a of the elliptic curve.
     * @param m The bit length of the finite field
     * Fm.
     * @param c The number of bits of accuracy, i.e. the scale of the returned
     * SimpleBigDecimal.
     * @return The value λ = s k / n computed to
     * c bits of accuracy.
     */
    public static SimpleBigDecimal approximateDivisionByN(BigInteger k,
            BigInteger s, BigInteger vm, byte a, int m, int c)
    {
        int _k = (m + 5)/2 + c;
        BigInteger ns = k.shiftRight(m - _k - 2 + a);

        BigInteger gs = s.multiply(ns);

        BigInteger hs = gs.shiftRight(m);

        BigInteger js = vm.multiply(hs);

        BigInteger gsPlusJs = gs.add(js);
        BigInteger ls = gsPlusJs.shiftRight(_k-c);
        if (gsPlusJs.testBit(_k-c-1))
        {
            // round up
            ls = ls.add(ECConstants.ONE);
        }

        return new SimpleBigDecimal(ls, c);
    }

    /**
     * Computes the τ-adic NAF (non-adjacent form) of an
     * element λ of Z[τ].
     * @param mu The parameter μ of the elliptic curve.
     * @param lambda The element λ of
     * Z[τ].
     * @return The τ-adic NAF of λ.
     */
    public static byte[] tauAdicNaf(byte mu, ZTauElement lambda)
    {
        if (!((mu == 1) || (mu == -1)))
        {
            throw new IllegalArgumentException("mu must be 1 or -1");
        }
        
        BigInteger norm = norm(mu, lambda);

        // Ceiling of log2 of the norm 
        int log2Norm = norm.bitLength();

        // If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52
        int maxLength = log2Norm > 30 ? log2Norm + 4 : 34;

        // The array holding the TNAF
        byte[] u = new byte[maxLength];
        int i = 0;

        // The actual length of the TNAF
        int length = 0;

        BigInteger r0 = lambda.u;
        BigInteger r1 = lambda.v;

        while(!((r0.equals(ECConstants.ZERO)) && (r1.equals(ECConstants.ZERO))))
        {
            // If r0 is odd
            if (r0.testBit(0))
            {
                u[i] = (byte) ECConstants.TWO.subtract((r0.subtract(r1.shiftLeft(1))).mod(ECConstants.FOUR)).intValue();

                // r0 = r0 - u[i]
                if (u[i] == 1)
                {
                    r0 = r0.clearBit(0);
                }
                else
                {
                    // u[i] == -1
                    r0 = r0.add(ECConstants.ONE);
                }
                length = i;
            }
            else
            {
                u[i] = 0;
            }

            BigInteger t = r0;
            BigInteger s = r0.shiftRight(1);
            if (mu == 1)
            {
                r0 = r1.add(s);
            }
            else
            {
                // mu == -1
                r0 = r1.subtract(s);
            }

            r1 = t.shiftRight(1).negate();
            i++;
        }

        length++;

        // Reduce the TNAF array to its actual length
        byte[] tnaf = new byte[length];
        System.arraycopy(u, 0, tnaf, 0, length);
        return tnaf;
    }

    /**
     * Applies the operation τ() to an
     * ECPoint.AbstractF2m. 
     * @param p The ECPoint.AbstractF2m to which τ() is applied.
     * @return τ(p)
     */
    public static ECPoint.AbstractF2m tau(ECPoint.AbstractF2m p)
    {
        return p.tau();
    }

    /**
     * Returns the parameter μ of the elliptic curve.
     * @param curve The elliptic curve from which to obtain μ.
     * The curve must be a Koblitz curve, i.e. a equals
     * 0 or 1 and b equals
     * 1. 
     * @return μ of the elliptic curve.
     * @throws IllegalArgumentException if the given ECCurve is not a Koblitz
     * curve.
     */
    public static byte getMu(ECCurve.AbstractF2m curve)
    {
        if (!curve.isKoblitz())
        {
            throw new IllegalArgumentException("No Koblitz curve (ABC), TNAF multiplication not possible");
        }

        if (curve.getA().isZero())
        {
            return -1;
        }

        return 1;
    }

    public static byte getMu(ECFieldElement curveA)
    {
        return (byte)(curveA.isZero() ? -1 : 1);
    }

    public static byte getMu(int curveA)
    {
        return (byte)(curveA == 0 ? -1 : 1);
    }

    /**
     * Calculates the Lucas Sequence elements Uk-1 and
     * Uk or Vk-1 and
     * Vk.
     * @param mu The parameter μ of the elliptic curve.
     * @param k The index of the second element of the Lucas Sequence to be
     * returned.
     * @param doV If set to true, computes Vk-1 and
     * Vk, otherwise Uk-1 and
     * Uk.
     * @return An array with 2 elements, containing Uk-1
     * and Uk or Vk-1
     * and Vk.
     */
    public static BigInteger[] getLucas(byte mu, int k, boolean doV)
    {
        if (!((mu == 1) || (mu == -1)))
        {
            throw new IllegalArgumentException("mu must be 1 or -1");
        }

        BigInteger u0, u1, u2;
        if (doV)
        {
            u0 = ECConstants.TWO;
            u1 = BigInteger.valueOf(mu);
        }
        else
        {
            u0 = ECConstants.ZERO;
            u1 = ECConstants.ONE;
        }

        for (int i = 1; i < k; i++)
        {
            // u2 = mu*u1 - 2*u0;
            BigInteger s = u1;
            if (mu < 0)
            {
                s = s.negate();
            }

            u2 = s.subtract(u0.shiftLeft(1));
            u0 = u1;
            u1 = u2;
        }

        return new BigInteger[]{ u0, u1 };
    }

    /**
     * Computes the auxiliary value tw. If the width is
     * 4, then for mu = 1, tw = 6 and for
     * mu = -1, tw = 10 
     * @param mu The parameter μ of the elliptic curve.
     * @param w The window width of the WTNAF.
     * @return the auxiliary value tw
     */
    public static BigInteger getTw(byte mu, int w)
    {
        if (w == 4)
        {
            if (mu == 1)
            {
                return BigInteger.valueOf(6);
            }
            else
            {
                // mu == -1
                return BigInteger.valueOf(10);
            }
        }
        else
        {
            // For w <> 4, the values must be computed
            BigInteger[] us = getLucas(mu, w, false);
            BigInteger twoToW = ECConstants.ZERO.setBit(w);
            BigInteger u1invert = us[1].modInverse(twoToW);
            return us[0].shiftLeft(1).multiply(u1invert).mod(twoToW);
        }
    }

    /**
     * Computes the auxiliary values s0 and
     * s1 used for partial modular reduction. 
     * @param curve The elliptic curve for which to compute
     * s0 and s1.
     * @throws IllegalArgumentException if curve is not a
     * Koblitz curve (Anomalous Binary Curve, ABC).
     */
    public static BigInteger[] getSi(ECCurve.AbstractF2m curve)
    {
        if (!curve.isKoblitz())
        {
            throw new IllegalArgumentException("si is defined for Koblitz curves only");
        }

        return getSi(curve.getFieldSize(), curve.getA().toBigInteger().intValue(), curve.getCofactor());
    }

    public static BigInteger[] getSi(int fieldSize, int curveA, BigInteger cofactor)
    {
        byte mu = getMu(curveA);
        int shifts = getShiftsForCofactor(cofactor);
        int index = fieldSize + 3 - curveA;
        BigInteger[] ui = getLucas(mu, index, false);
        if (mu == 1)
        {
            ui[0] = ui[0].negate();
            ui[1] = ui[1].negate();
        }

        BigInteger dividend0 = ECConstants.ONE.add(ui[1]).shiftRight(shifts);
        BigInteger dividend1 = ECConstants.ONE.add(ui[0]).shiftRight(shifts).negate();

        return new BigInteger[] { dividend0, dividend1 };
    }

    protected static int getShiftsForCofactor(BigInteger h)
    {
        if (h != null)
        {
            if (h.equals(ECConstants.TWO))
            {
                return 1;
            }
            if (h.equals(ECConstants.FOUR))
            {
                return 2;
            }
        }

        throw new IllegalArgumentException("h (Cofactor) must be 2 or 4");
    }

    /**
     * Partial modular reduction modulo
     * m - 1)/(τ - 1).
     * @param k The integer to be reduced.
     * @param m The bitlength of the underlying finite field.
     * @param a The parameter a of the elliptic curve.
     * @param s The auxiliary values s0 and
     * s1.
     * @param mu The parameter μ of the elliptic curve.
     * @param c The precision (number of bits of accuracy) of the partial
     * modular reduction.
     * @return ρ := k partmod (τm - 1)/(τ - 1)
     */
    public static ZTauElement partModReduction(ECCurve.AbstractF2m curve, BigInteger k, byte a, byte mu, byte c)
    {
        int m = curve.getFieldSize();
        BigInteger[] s = curve.getSi();

        // d0 = s[0] + mu*s[1]; mu is either 1 or -1
        BigInteger d0;
        if (mu == 1)
        {
            d0 = s[0].add(s[1]);
        }
        else
        {
            d0 = s[0].subtract(s[1]);
        }

        BigInteger vm;
        if (curve.isKoblitz())
        {
            /*
             * Jerome A. Solinas, "Improved Algorithms for Arithmetic on Anomalous Binary Curves", (21).
             */
            vm = ECConstants.ONE.shiftLeft(m).add(ECConstants.ONE).subtract(
                curve.getOrder().multiply(curve.getCofactor()));
        }
        else
        {
            BigInteger[] v = getLucas(mu, m, true);
            vm = v[1];
        }

        SimpleBigDecimal lambda0 = approximateDivisionByN(k, s[0], vm, a, m, c);
        SimpleBigDecimal lambda1 = approximateDivisionByN(k, s[1], vm, a, m, c);

        ZTauElement q = round(lambda0, lambda1, mu);

        // r0 = n - d0*q0 - 2*s1*q1
        BigInteger r0 = k.subtract(d0.multiply(q.u)).subtract(
            s[1].multiply(q.v).shiftLeft(1));

        // r1 = s1*q0 - s0*q1
        BigInteger r1 = s[1].multiply(q.u).subtract(s[0].multiply(q.v));
        
        return new ZTauElement(r0, r1);
    }

    /**
     * Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m}
     * by a BigInteger using the reduced τ-adic
     * NAF (RTNAF) method.
     * @param p The ECPoint.AbstractF2m to multiply.
     * @param k The BigInteger by which to multiply p.
     * @return k * p
     */
    public static ECPoint.AbstractF2m multiplyRTnaf(ECPoint.AbstractF2m p, BigInteger k)
    {
        ECCurve.AbstractF2m curve = (ECCurve.AbstractF2m) p.getCurve();
        int a = curve.getA().toBigInteger().intValue();
        byte mu = getMu(a);

        ZTauElement rho = partModReduction(curve, k, (byte)a, mu, (byte)10);

        return multiplyTnaf(p, rho);
    }

    /**
     * Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m}
     * by an element λ of Z[τ]
     * using the τ-adic NAF (TNAF) method.
     * @param p The ECPoint.AbstractF2m to multiply.
     * @param lambda The element λ of
     * Z[τ].
     * @return λ * p
     */
    public static ECPoint.AbstractF2m multiplyTnaf(ECPoint.AbstractF2m p, ZTauElement lambda)
    {
        ECCurve.AbstractF2m curve = (ECCurve.AbstractF2m)p.getCurve();
        ECPoint.AbstractF2m pNeg = (ECPoint.AbstractF2m)p.negate();
        byte mu = getMu(curve.getA());
        byte[] u = tauAdicNaf(mu, lambda);

        return multiplyFromTnaf(p, pNeg, u);
    }

    /**
    * Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m}
    * by an element λ of Z[τ]
    * using the τ-adic NAF (TNAF) method, given the TNAF
    * of λ.
    * @param p The ECPoint.AbstractF2m to multiply.
    * @param u The the TNAF of λ..
    * @return λ * p
    */
    public static ECPoint.AbstractF2m multiplyFromTnaf(ECPoint.AbstractF2m p, ECPoint.AbstractF2m pNeg, byte[] u)
    {
        ECCurve curve = p.getCurve();
        ECPoint.AbstractF2m q = (ECPoint.AbstractF2m)curve.getInfinity();
        int tauCount = 0;
        for (int i = u.length - 1; i >= 0; i--)
        {
            ++tauCount;
            byte ui = u[i];
            if (ui != 0)
            {
                q = q.tauPow(tauCount);
                tauCount = 0;

                ECPoint x = ui > 0 ? p : pNeg;
                q = (ECPoint.AbstractF2m)q.add(x);
            }
        }
        if (tauCount > 0)
        {
            q = q.tauPow(tauCount);
        }
        return q;
    }

    /**
     * Computes the [τ]-adic window NAF of an element
     * λ of Z[τ].
     * @param mu The parameter μ of the elliptic curve.
     * @param lambda The element λ of
     * Z[τ] of which to compute the
     * [τ]-adic NAF.
     * @param width The window width of the resulting WNAF.
     * @param pow2w 2width.
     * @param tw The auxiliary value tw.
     * @param alpha The αu's for the window width.
     * @return The [τ]-adic window NAF of
     * λ.
     */
    public static byte[] tauAdicWNaf(byte mu, ZTauElement lambda, int width, int tw, ZTauElement[] alpha)
    {
        if (!(mu == 1 || mu == -1))
        {
            throw new IllegalArgumentException("mu must be 1 or -1");
        }

        BigInteger norm = norm(mu, lambda);

        // Ceiling of log2 of the norm 
        int log2Norm = norm.bitLength();

        // If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52
        int maxLength = log2Norm > 30 ? log2Norm + 4 + width : 34 + width;

        // The array holding the TNAF
        byte[] u = new byte[maxLength];

        int pow2Width = 1 << width;
        int pow2Mask = pow2Width - 1;
        int s = 32 - width;

        // Split lambda into two BigIntegers to simplify calculations
        BigInteger R0 = lambda.u;
        BigInteger R1 = lambda.v;
        int uPos = 0;

        // while lambda <> (0, 0)
        while (R0.bitLength() > 62 || R1.bitLength() > 62)
        {
            if (R0.testBit(0))
            {
                int uVal = R0.intValue() + (R1.intValue() * tw);
                int alphaPos = uVal & pow2Mask;

                u[uPos] = (byte)((uVal << s) >> s);
                R0 = R0.subtract(alpha[alphaPos].u);
                R1 = R1.subtract(alpha[alphaPos].v);
            }

            ++uPos;

            BigInteger t = R0.shiftRight(1);
            if (mu == 1)
            {
                R0 = R1.add(t);
            }
            else // mu == -1
            {
                R0 = R1.subtract(t);
            }
            R1 = t.negate();
        }

        long r0_64 = BigIntegers.longValueExact(R0);
        long r1_64 = BigIntegers.longValueExact(R1);

        // while lambda <> (0, 0)
        while ((r0_64 | r1_64) != 0L)
        {
            if ((r0_64 & 1L) != 0L)
            {
                int uVal = (int)r0_64 + ((int)r1_64 * tw);
                int alphaPos = uVal & pow2Mask;

                u[uPos] = (byte)((uVal << s) >> s);
                r0_64 -= alpha[alphaPos].u.intValue();
                r1_64 -= alpha[alphaPos].v.intValue();
            }

            ++uPos;

            long t_64 = r0_64 >> 1;
            if (mu == 1)
            {
                r0_64 = r1_64 + t_64;
            }
            else // mu == -1
            {
                r0_64 = r1_64 - t_64;
            }
            r1_64 = -t_64;
        }
        
        return u;
    }

    /**
     * Does the precomputation for WTNAF multiplication.
     * @param p The ECPoint for which to do the precomputation.
     * @param a The parameter a of the elliptic curve.
     * @return The precomputation array for p. 
     */
    public static ECPoint.AbstractF2m[] getPreComp(ECPoint.AbstractF2m p, byte a)
    {
        ECPoint.AbstractF2m pNeg = (ECPoint.AbstractF2m)p.negate();
        byte[][] alphaTnaf = (a == 0) ? Tnaf.alpha0Tnaf : Tnaf.alpha1Tnaf;

        ECPoint.AbstractF2m[] pu = new ECPoint.AbstractF2m[(alphaTnaf.length + 1) >>> 1];
        pu[0] = p;

        int precompLen = alphaTnaf.length;
        for (int i = 3; i < precompLen; i += 2)
        {
            pu[i >>> 1] = Tnaf.multiplyFromTnaf(p, pNeg, alphaTnaf[i]);
        }

        p.getCurve().normalizeAll(pu);

        return pu;
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy