org.bouncycastle.math.ec.custom.gm.SM2P256V1Curve Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-debug-jdk18on Show documentation
Show all versions of bcprov-ext-debug-jdk18on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.
The newest version!
package org.bouncycastle.math.ec.custom.gm;
import java.math.BigInteger;
import java.security.SecureRandom;
import org.bouncycastle.math.ec.AbstractECLookupTable;
import org.bouncycastle.math.ec.ECConstants;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.ec.ECLookupTable;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.raw.Nat256;
import org.bouncycastle.util.encoders.Hex;
public class SM2P256V1Curve extends ECCurve.AbstractFp
{
public static final BigInteger q = SM2P256V1FieldElement.Q;
private static final int SM2P256V1_DEFAULT_COORDS = COORD_JACOBIAN;
private static final ECFieldElement[] SM2P256V1_AFFINE_ZS = new ECFieldElement[] { new SM2P256V1FieldElement(ECConstants.ONE) };
protected SM2P256V1Point infinity;
public SM2P256V1Curve()
{
super(q);
this.infinity = new SM2P256V1Point(this, null, null);
this.a = fromBigInteger(new BigInteger(1,
Hex.decodeStrict("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC")));
this.b = fromBigInteger(new BigInteger(1,
Hex.decodeStrict("28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93")));
this.order = new BigInteger(1, Hex.decodeStrict("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123"));
this.cofactor = BigInteger.valueOf(1);
this.coord = SM2P256V1_DEFAULT_COORDS;
}
protected ECCurve cloneCurve()
{
return new SM2P256V1Curve();
}
public boolean supportsCoordinateSystem(int coord)
{
switch (coord)
{
case COORD_JACOBIAN:
return true;
default:
return false;
}
}
public BigInteger getQ()
{
return q;
}
public int getFieldSize()
{
return q.bitLength();
}
public ECFieldElement fromBigInteger(BigInteger x)
{
return new SM2P256V1FieldElement(x);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y)
{
return new SM2P256V1Point(this, x, y);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs)
{
return new SM2P256V1Point(this, x, y, zs);
}
public ECPoint getInfinity()
{
return infinity;
}
public ECLookupTable createCacheSafeLookupTable(ECPoint[] points, int off, final int len)
{
final int FE_INTS = 8;
final int[] table = new int[len * FE_INTS * 2];
{
int pos = 0;
for (int i = 0; i < len; ++i)
{
ECPoint p = points[off + i];
Nat256.copy(((SM2P256V1FieldElement)p.getRawXCoord()).x, 0, table, pos); pos += FE_INTS;
Nat256.copy(((SM2P256V1FieldElement)p.getRawYCoord()).x, 0, table, pos); pos += FE_INTS;
}
}
return new AbstractECLookupTable()
{
public int getSize()
{
return len;
}
public ECPoint lookup(int index)
{
int[] x = Nat256.create(), y = Nat256.create();
int pos = 0;
for (int i = 0; i < len; ++i)
{
int MASK = ((i ^ index) - 1) >> 31;
for (int j = 0; j < FE_INTS; ++j)
{
x[j] ^= table[pos + j] & MASK;
y[j] ^= table[pos + FE_INTS + j] & MASK;
}
pos += (FE_INTS * 2);
}
return createPoint(x, y);
}
public ECPoint lookupVar(int index)
{
int[] x = Nat256.create(), y = Nat256.create();
int pos = index * FE_INTS * 2;
for (int j = 0; j < FE_INTS; ++j)
{
x[j] = table[pos + j];
y[j] = table[pos + FE_INTS + j];
}
return createPoint(x, y);
}
private ECPoint createPoint(int[] x, int[] y)
{
return createRawPoint(new SM2P256V1FieldElement(x), new SM2P256V1FieldElement(y), SM2P256V1_AFFINE_ZS);
}
};
}
public ECFieldElement randomFieldElement(SecureRandom r)
{
int[] x = Nat256.create();
SM2P256V1Field.random(r, x);
return new SM2P256V1FieldElement(x);
}
public ECFieldElement randomFieldElementMult(SecureRandom r)
{
int[] x = Nat256.create();
SM2P256V1Field.randomMult(r, x);
return new SM2P256V1FieldElement(x);
}
}