All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.math.ec.custom.gm.SM2P256V1FieldElement Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.

The newest version!
package org.bouncycastle.math.ec.custom.gm;

import java.math.BigInteger;

import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.raw.Nat256;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.encoders.Hex;

public class SM2P256V1FieldElement extends ECFieldElement.AbstractFp
{
    public static final BigInteger Q = new BigInteger(1,
        Hex.decodeStrict("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF"));

    protected int[] x;

    public SM2P256V1FieldElement(BigInteger x)
    {
        if (x == null || x.signum() < 0 || x.compareTo(Q) >= 0)
        {
            throw new IllegalArgumentException("x value invalid for SM2P256V1FieldElement");
        }

        this.x = SM2P256V1Field.fromBigInteger(x);
    }

    public SM2P256V1FieldElement()
    {
        this.x = Nat256.create();
    }

    protected SM2P256V1FieldElement(int[] x)
    {
        this.x = x;
    }

    public boolean isZero()
    {
        return Nat256.isZero(x);
    }

    public boolean isOne()
    {
        return Nat256.isOne(x);
    }

    public boolean testBitZero()
    {
        return Nat256.getBit(x, 0) == 1;
    }

    public BigInteger toBigInteger()
    {
        return Nat256.toBigInteger(x);
    }

    public String getFieldName()
    {
        return "SM2P256V1Field";
    }

    public int getFieldSize()
    {
        return Q.bitLength();
    }

    public ECFieldElement add(ECFieldElement b)
    {
        int[] z = Nat256.create();
        SM2P256V1Field.add(x, ((SM2P256V1FieldElement)b).x, z);
        return new SM2P256V1FieldElement(z);
    }

    public ECFieldElement addOne()
    {
        int[] z = Nat256.create();
        SM2P256V1Field.addOne(x, z);
        return new SM2P256V1FieldElement(z);
    }

    public ECFieldElement subtract(ECFieldElement b)
    {
        int[] z = Nat256.create();
        SM2P256V1Field.subtract(x, ((SM2P256V1FieldElement)b).x, z);
        return new SM2P256V1FieldElement(z);
    }

    public ECFieldElement multiply(ECFieldElement b)
    {
        int[] z = Nat256.create();
        SM2P256V1Field.multiply(x, ((SM2P256V1FieldElement)b).x, z);
        return new SM2P256V1FieldElement(z);
    }

    public ECFieldElement divide(ECFieldElement b)
    {
//        return multiply(b.invert());
        int[] z = Nat256.create();
        SM2P256V1Field.inv(((SM2P256V1FieldElement)b).x, z);
        SM2P256V1Field.multiply(z, x, z);
        return new SM2P256V1FieldElement(z);
    }

    public ECFieldElement negate()
    {
        int[] z = Nat256.create();
        SM2P256V1Field.negate(x, z);
        return new SM2P256V1FieldElement(z);
    }

    public ECFieldElement square()
    {
        int[] z = Nat256.create();
        SM2P256V1Field.square(x, z);
        return new SM2P256V1FieldElement(z);
    }

    public ECFieldElement invert()
    {
//        return new SM2P256V1FieldElement(toBigInteger().modInverse(Q));
        int[] z = Nat256.create();
        SM2P256V1Field.inv(x, z);
        return new SM2P256V1FieldElement(z);
    }

    /**
     * return a sqrt root - the routine verifies that the calculation returns the right value - if
     * none exists it returns null.
     */
    public ECFieldElement sqrt()
    {
        /*
         * Raise this element to the exponent 2^254 - 2^222 - 2^94 + 2^62
         *
         * Breaking up the exponent's binary representation into "repunits", we get:
         * { 31 1s } { 1 0s } { 128 1s } { 31 0s } { 1 1s } { 62 0s }
         *
         * We use an addition chain for the beginning: [1], 2, 3, 6, 12, [24], 30, [31] 
         */

        int[] x1 = this.x;
        if (Nat256.isZero(x1) || Nat256.isOne(x1))
        {
            return this;
        }

        int[] x2 = Nat256.create();
        SM2P256V1Field.square(x1, x2);
        SM2P256V1Field.multiply(x2, x1, x2);
        int[] x4 = Nat256.create();
        SM2P256V1Field.squareN(x2, 2, x4);
        SM2P256V1Field.multiply(x4, x2, x4);
        int[] x6 = Nat256.create();
        SM2P256V1Field.squareN(x4, 2, x6);
        SM2P256V1Field.multiply(x6, x2, x6);
        int[] x12 = x2;
        SM2P256V1Field.squareN(x6, 6, x12);
        SM2P256V1Field.multiply(x12, x6, x12);
        int[] x24 = Nat256.create();
        SM2P256V1Field.squareN(x12, 12, x24);
        SM2P256V1Field.multiply(x24, x12, x24);
        int[] x30 = x12;
        SM2P256V1Field.squareN(x24, 6, x30);
        SM2P256V1Field.multiply(x30, x6, x30);
        int[] x31 = x6;
        SM2P256V1Field.square(x30, x31);
        SM2P256V1Field.multiply(x31, x1, x31);

        int[] t1 = x24;
        SM2P256V1Field.squareN(x31, 31, t1);

        int[] x62 = x30;
        SM2P256V1Field.multiply(t1, x31, x62);

        SM2P256V1Field.squareN(t1, 32, t1);
        SM2P256V1Field.multiply(t1, x62, t1);
        SM2P256V1Field.squareN(t1, 62, t1);
        SM2P256V1Field.multiply(t1, x62, t1);
        SM2P256V1Field.squareN(t1, 4, t1);
        SM2P256V1Field.multiply(t1, x4, t1);
        SM2P256V1Field.squareN(t1, 32, t1);
        SM2P256V1Field.multiply(t1, x1, t1);
        SM2P256V1Field.squareN(t1, 62, t1);

        int[] t2 = x4;
        SM2P256V1Field.square(t1, t2);

        return Nat256.eq(x1, t2) ? new SM2P256V1FieldElement(t1) : null;
    }

    public boolean equals(Object other)
    {
        if (other == this)
        {
            return true;
        }

        if (!(other instanceof SM2P256V1FieldElement))
        {
            return false;
        }

        SM2P256V1FieldElement o = (SM2P256V1FieldElement)other;
        return Nat256.eq(x, o.x);
    }

    public int hashCode()
    {
        return Q.hashCode() ^ Arrays.hashCode(x, 0, 8);
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy