org.bouncycastle.math.ec.custom.sec.SecP160R2FieldElement Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-debug-jdk18on Show documentation
Show all versions of bcprov-ext-debug-jdk18on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.
The newest version!
package org.bouncycastle.math.ec.custom.sec;
import java.math.BigInteger;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.raw.Nat160;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.encoders.Hex;
public class SecP160R2FieldElement extends ECFieldElement.AbstractFp
{
public static final BigInteger Q = new BigInteger(1,
Hex.decodeStrict("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73"));
protected int[] x;
public SecP160R2FieldElement(BigInteger x)
{
if (x == null || x.signum() < 0 || x.compareTo(Q) >= 0)
{
throw new IllegalArgumentException("x value invalid for SecP160R2FieldElement");
}
this.x = SecP160R2Field.fromBigInteger(x);
}
public SecP160R2FieldElement()
{
this.x = Nat160.create();
}
protected SecP160R2FieldElement(int[] x)
{
this.x = x;
}
public boolean isZero()
{
return Nat160.isZero(x);
}
public boolean isOne()
{
return Nat160.isOne(x);
}
public boolean testBitZero()
{
return Nat160.getBit(x, 0) == 1;
}
public BigInteger toBigInteger()
{
return Nat160.toBigInteger(x);
}
public String getFieldName()
{
return "SecP160R2Field";
}
public int getFieldSize()
{
return Q.bitLength();
}
public ECFieldElement add(ECFieldElement b)
{
int[] z = Nat160.create();
SecP160R2Field.add(x, ((SecP160R2FieldElement)b).x, z);
return new SecP160R2FieldElement(z);
}
public ECFieldElement addOne()
{
int[] z = Nat160.create();
SecP160R2Field.addOne(x, z);
return new SecP160R2FieldElement(z);
}
public ECFieldElement subtract(ECFieldElement b)
{
int[] z = Nat160.create();
SecP160R2Field.subtract(x, ((SecP160R2FieldElement)b).x, z);
return new SecP160R2FieldElement(z);
}
public ECFieldElement multiply(ECFieldElement b)
{
int[] z = Nat160.create();
SecP160R2Field.multiply(x, ((SecP160R2FieldElement)b).x, z);
return new SecP160R2FieldElement(z);
}
public ECFieldElement divide(ECFieldElement b)
{
// return multiply(b.invert());
int[] z = Nat160.create();
SecP160R2Field.inv(((SecP160R2FieldElement)b).x, z);
SecP160R2Field.multiply(z, x, z);
return new SecP160R2FieldElement(z);
}
public ECFieldElement negate()
{
int[] z = Nat160.create();
SecP160R2Field.negate(x, z);
return new SecP160R2FieldElement(z);
}
public ECFieldElement square()
{
int[] z = Nat160.create();
SecP160R2Field.square(x, z);
return new SecP160R2FieldElement(z);
}
public ECFieldElement invert()
{
// return new SecP160R2FieldElement(toBigInteger().modInverse(Q));
int[] z = Nat160.create();
SecP160R2Field.inv(x, z);
return new SecP160R2FieldElement(z);
}
// D.1.4 91
/**
* return a sqrt root - the routine verifies that the calculation returns the right value - if
* none exists it returns null.
*/
public ECFieldElement sqrt()
{
/*
* Raise this element to the exponent 2^158 - 2^30 - 2^12 - 2^10 - 2^7 - 2^6 - 2^5 - 2^1 - 2^0
*
* Breaking up the exponent's binary representation into "repunits", we get: { 127 1s } { 1
* 0s } { 17 1s } { 1 0s } { 1 1s } { 1 0s } { 2 1s } { 3 0s } { 3 1s } { 1 0s } { 1 1s }
*
* Therefore we need an addition chain containing 1, 2, 3, 17, 127 (the lengths of the repunits)
* We use: [1], [2], [3], 4, 7, 14, [17], 31, 62, 124, [127]
*/
int[] x1 = this.x;
if (Nat160.isZero(x1) || Nat160.isOne(x1))
{
return this;
}
int[] x2 = Nat160.create();
SecP160R2Field.square(x1, x2);
SecP160R2Field.multiply(x2, x1, x2);
int[] x3 = Nat160.create();
SecP160R2Field.square(x2, x3);
SecP160R2Field.multiply(x3, x1, x3);
int[] x4 = Nat160.create();
SecP160R2Field.square(x3, x4);
SecP160R2Field.multiply(x4, x1, x4);
int[] x7 = Nat160.create();
SecP160R2Field.squareN(x4, 3, x7);
SecP160R2Field.multiply(x7, x3, x7);
int[] x14 = x4;
SecP160R2Field.squareN(x7, 7, x14);
SecP160R2Field.multiply(x14, x7, x14);
int[] x17 = x7;
SecP160R2Field.squareN(x14, 3, x17);
SecP160R2Field.multiply(x17, x3, x17);
int[] x31 = Nat160.create();
SecP160R2Field.squareN(x17, 14, x31);
SecP160R2Field.multiply(x31, x14, x31);
int[] x62 = x14;
SecP160R2Field.squareN(x31, 31, x62);
SecP160R2Field.multiply(x62, x31, x62);
int[] x124 = x31;
SecP160R2Field.squareN(x62, 62, x124);
SecP160R2Field.multiply(x124, x62, x124);
int[] x127 = x62;
SecP160R2Field.squareN(x124, 3, x127);
SecP160R2Field.multiply(x127, x3, x127);
int[] t1 = x127;
SecP160R2Field.squareN(t1, 18, t1);
SecP160R2Field.multiply(t1, x17, t1);
SecP160R2Field.squareN(t1, 2, t1);
SecP160R2Field.multiply(t1, x1, t1);
SecP160R2Field.squareN(t1, 3, t1);
SecP160R2Field.multiply(t1, x2, t1);
SecP160R2Field.squareN(t1, 6, t1);
SecP160R2Field.multiply(t1, x3, t1);
SecP160R2Field.squareN(t1, 2, t1);
SecP160R2Field.multiply(t1, x1, t1);
int[] t2 = x2;
SecP160R2Field.square(t1, t2);
return Nat160.eq(x1, t2) ? new SecP160R2FieldElement(t1) : null;
}
public boolean equals(Object other)
{
if (other == this)
{
return true;
}
if (!(other instanceof SecP160R2FieldElement))
{
return false;
}
SecP160R2FieldElement o = (SecP160R2FieldElement)other;
return Nat160.eq(x, o.x);
}
public int hashCode()
{
return Q.hashCode() ^ Arrays.hashCode(x, 0, 5);
}
}