org.bouncycastle.math.ec.custom.sec.SecP192K1FieldElement Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-debug-jdk18on Show documentation
Show all versions of bcprov-ext-debug-jdk18on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.
The newest version!
package org.bouncycastle.math.ec.custom.sec;
import java.math.BigInteger;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.raw.Nat192;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.encoders.Hex;
public class SecP192K1FieldElement extends ECFieldElement.AbstractFp
{
public static final BigInteger Q = new BigInteger(1,
Hex.decodeStrict("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37"));
protected int[] x;
public SecP192K1FieldElement(BigInteger x)
{
if (x == null || x.signum() < 0 || x.compareTo(Q) >= 0)
{
throw new IllegalArgumentException("x value invalid for SecP192K1FieldElement");
}
this.x = SecP192K1Field.fromBigInteger(x);
}
public SecP192K1FieldElement()
{
this.x = Nat192.create();
}
protected SecP192K1FieldElement(int[] x)
{
this.x = x;
}
public boolean isZero()
{
return Nat192.isZero(x);
}
public boolean isOne()
{
return Nat192.isOne(x);
}
public boolean testBitZero()
{
return Nat192.getBit(x, 0) == 1;
}
public BigInteger toBigInteger()
{
return Nat192.toBigInteger(x);
}
public String getFieldName()
{
return "SecP192K1Field";
}
public int getFieldSize()
{
return Q.bitLength();
}
public ECFieldElement add(ECFieldElement b)
{
int[] z = Nat192.create();
SecP192K1Field.add(x, ((SecP192K1FieldElement)b).x, z);
return new SecP192K1FieldElement(z);
}
public ECFieldElement addOne()
{
int[] z = Nat192.create();
SecP192K1Field.addOne(x, z);
return new SecP192K1FieldElement(z);
}
public ECFieldElement subtract(ECFieldElement b)
{
int[] z = Nat192.create();
SecP192K1Field.subtract(x, ((SecP192K1FieldElement)b).x, z);
return new SecP192K1FieldElement(z);
}
public ECFieldElement multiply(ECFieldElement b)
{
int[] z = Nat192.create();
SecP192K1Field.multiply(x, ((SecP192K1FieldElement)b).x, z);
return new SecP192K1FieldElement(z);
}
public ECFieldElement divide(ECFieldElement b)
{
// return multiply(b.invert());
int[] z = Nat192.create();
SecP192K1Field.inv(((SecP192K1FieldElement)b).x, z);
SecP192K1Field.multiply(z, x, z);
return new SecP192K1FieldElement(z);
}
public ECFieldElement negate()
{
int[] z = Nat192.create();
SecP192K1Field.negate(x, z);
return new SecP192K1FieldElement(z);
}
public ECFieldElement square()
{
int[] z = Nat192.create();
SecP192K1Field.square(x, z);
return new SecP192K1FieldElement(z);
}
public ECFieldElement invert()
{
// return new SecP192K1FieldElement(toBigInteger().modInverse(Q));
int[] z = Nat192.create();
SecP192K1Field.inv(x, z);
return new SecP192K1FieldElement(z);
}
/**
* return a sqrt root - the routine verifies that the calculation returns the right value - if
* none exists it returns null.
*/
public ECFieldElement sqrt()
{
/*
* Raise this element to the exponent 2^190 - 2^30 - 2^10 - 2^6 - 2^5 - 2^4 - 2^1
*
* Breaking up the exponent's binary representation into "repunits", we get:
* { 159 1s } { 1 0s } { 19 1s } { 1 0s } { 3 1s } { 3 0s } { 3 1s } { 1 0s }
*
* Therefore we need an addition chain containing 3, 19, 159 (the lengths of the repunits)
* We use: 1, 2, [3], 6, 8, 16, [19], 35, 70, 140, [159]
*/
int[] x1 = this.x;
if (Nat192.isZero(x1) || Nat192.isOne(x1))
{
return this;
}
int[] x2 = Nat192.create();
SecP192K1Field.square(x1, x2);
SecP192K1Field.multiply(x2, x1, x2);
int[] x3 = Nat192.create();
SecP192K1Field.square(x2, x3);
SecP192K1Field.multiply(x3, x1, x3);
int[] x6 = Nat192.create();
SecP192K1Field.squareN(x3, 3, x6);
SecP192K1Field.multiply(x6, x3, x6);
int[] x8 = x6;
SecP192K1Field.squareN(x6, 2, x8);
SecP192K1Field.multiply(x8, x2, x8);
int[] x16 = x2;
SecP192K1Field.squareN(x8, 8, x16);
SecP192K1Field.multiply(x16, x8, x16);
int[] x19 = x8;
SecP192K1Field.squareN(x16, 3, x19);
SecP192K1Field.multiply(x19, x3, x19);
int[] x35 = Nat192.create();
SecP192K1Field.squareN(x19, 16, x35);
SecP192K1Field.multiply(x35, x16, x35);
int[] x70 = x16;
SecP192K1Field.squareN(x35, 35, x70);
SecP192K1Field.multiply(x70, x35, x70);
int[] x140 = x35;
SecP192K1Field.squareN(x70, 70, x140);
SecP192K1Field.multiply(x140, x70, x140);
int[] x159 = x70;
SecP192K1Field.squareN(x140, 19, x159);
SecP192K1Field.multiply(x159, x19, x159);
int[] t1 = x159;
SecP192K1Field.squareN(t1, 20, t1);
SecP192K1Field.multiply(t1, x19, t1);
SecP192K1Field.squareN(t1, 4, t1);
SecP192K1Field.multiply(t1, x3, t1);
SecP192K1Field.squareN(t1, 6, t1);
SecP192K1Field.multiply(t1, x3, t1);
SecP192K1Field.square(t1, t1);
int[] t2 = x3;
SecP192K1Field.square(t1, t2);
return Nat192.eq(x1, t2) ? new SecP192K1FieldElement(t1) : null;
}
public boolean equals(Object other)
{
if (other == this)
{
return true;
}
if (!(other instanceof SecP192K1FieldElement))
{
return false;
}
SecP192K1FieldElement o = (SecP192K1FieldElement)other;
return Nat192.eq(x, o.x);
}
public int hashCode()
{
return Q.hashCode() ^ Arrays.hashCode(x, 0, 6);
}
}