org.bouncycastle.math.ec.custom.sec.SecP224K1Point Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-debug-jdk18on Show documentation
Show all versions of bcprov-ext-debug-jdk18on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.
The newest version!
package org.bouncycastle.math.ec.custom.sec;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.raw.Nat;
import org.bouncycastle.math.raw.Nat224;
public class SecP224K1Point extends ECPoint.AbstractFp
{
SecP224K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
{
super(curve, x, y);
}
SecP224K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs)
{
super(curve, x, y, zs);
}
protected ECPoint detach()
{
return new SecP224K1Point(null, getAffineXCoord(), getAffineYCoord());
}
// B.3 pg 62
public ECPoint add(ECPoint b)
{
if (this.isInfinity())
{
return b;
}
if (b.isInfinity())
{
return this;
}
if (this == b)
{
return twice();
}
ECCurve curve = this.getCurve();
SecP224K1FieldElement X1 = (SecP224K1FieldElement)this.x, Y1 = (SecP224K1FieldElement)this.y;
SecP224K1FieldElement X2 = (SecP224K1FieldElement)b.getXCoord(), Y2 = (SecP224K1FieldElement)b.getYCoord();
SecP224K1FieldElement Z1 = (SecP224K1FieldElement)this.zs[0];
SecP224K1FieldElement Z2 = (SecP224K1FieldElement)b.getZCoord(0);
int c;
int[] tt1 = Nat224.createExt();
int[] t2 = Nat224.create();
int[] t3 = Nat224.create();
int[] t4 = Nat224.create();
boolean Z1IsOne = Z1.isOne();
int[] U2, S2;
if (Z1IsOne)
{
U2 = X2.x;
S2 = Y2.x;
}
else
{
S2 = t3;
SecP224K1Field.square(Z1.x, S2);
U2 = t2;
SecP224K1Field.multiply(S2, X2.x, U2);
SecP224K1Field.multiply(S2, Z1.x, S2);
SecP224K1Field.multiply(S2, Y2.x, S2);
}
boolean Z2IsOne = Z2.isOne();
int[] U1, S1;
if (Z2IsOne)
{
U1 = X1.x;
S1 = Y1.x;
}
else
{
S1 = t4;
SecP224K1Field.square(Z2.x, S1);
U1 = tt1;
SecP224K1Field.multiply(S1, X1.x, U1);
SecP224K1Field.multiply(S1, Z2.x, S1);
SecP224K1Field.multiply(S1, Y1.x, S1);
}
int[] H = Nat224.create();
SecP224K1Field.subtract(U1, U2, H);
int[] R = t2;
SecP224K1Field.subtract(S1, S2, R);
// Check if b == this or b == -this
if (Nat224.isZero(H))
{
if (Nat224.isZero(R))
{
// this == b, i.e. this must be doubled
return this.twice();
}
// this == -b, i.e. the result is the point at infinity
return curve.getInfinity();
}
int[] HSquared = t3;
SecP224K1Field.square(H, HSquared);
int[] G = Nat224.create();
SecP224K1Field.multiply(HSquared, H, G);
int[] V = t3;
SecP224K1Field.multiply(HSquared, U1, V);
SecP224K1Field.negate(G, G);
Nat224.mul(S1, G, tt1);
c = Nat224.addBothTo(V, V, G);
SecP224K1Field.reduce32(c, G);
SecP224K1FieldElement X3 = new SecP224K1FieldElement(t4);
SecP224K1Field.square(R, X3.x);
SecP224K1Field.subtract(X3.x, G, X3.x);
SecP224K1FieldElement Y3 = new SecP224K1FieldElement(G);
SecP224K1Field.subtract(V, X3.x, Y3.x);
SecP224K1Field.multiplyAddToExt(Y3.x, R, tt1);
SecP224K1Field.reduce(tt1, Y3.x);
SecP224K1FieldElement Z3 = new SecP224K1FieldElement(H);
if (!Z1IsOne)
{
SecP224K1Field.multiply(Z3.x, Z1.x, Z3.x);
}
if (!Z2IsOne)
{
SecP224K1Field.multiply(Z3.x, Z2.x, Z3.x);
}
ECFieldElement[] zs = new ECFieldElement[] { Z3 };
return new SecP224K1Point(curve, X3, Y3, zs);
}
// B.3 pg 62
public ECPoint twice()
{
if (this.isInfinity())
{
return this;
}
ECCurve curve = this.getCurve();
SecP224K1FieldElement Y1 = (SecP224K1FieldElement)this.y;
if (Y1.isZero())
{
return curve.getInfinity();
}
SecP224K1FieldElement X1 = (SecP224K1FieldElement)this.x, Z1 = (SecP224K1FieldElement)this.zs[0];
int c;
int[] Y1Squared = Nat224.create();
SecP224K1Field.square(Y1.x, Y1Squared);
int[] T = Nat224.create();
SecP224K1Field.square(Y1Squared, T);
int[] M = Nat224.create();
SecP224K1Field.square(X1.x, M);
c = Nat224.addBothTo(M, M, M);
SecP224K1Field.reduce32(c, M);
int[] S = Y1Squared;
SecP224K1Field.multiply(Y1Squared, X1.x, S);
c = Nat.shiftUpBits(7, S, 2, 0);
SecP224K1Field.reduce32(c, S);
int[] t1 = Nat224.create();
c = Nat.shiftUpBits(7, T, 3, 0, t1);
SecP224K1Field.reduce32(c, t1);
SecP224K1FieldElement X3 = new SecP224K1FieldElement(T);
SecP224K1Field.square(M, X3.x);
SecP224K1Field.subtract(X3.x, S, X3.x);
SecP224K1Field.subtract(X3.x, S, X3.x);
SecP224K1FieldElement Y3 = new SecP224K1FieldElement(S);
SecP224K1Field.subtract(S, X3.x, Y3.x);
SecP224K1Field.multiply(Y3.x, M, Y3.x);
SecP224K1Field.subtract(Y3.x, t1, Y3.x);
SecP224K1FieldElement Z3 = new SecP224K1FieldElement(M);
SecP224K1Field.twice(Y1.x, Z3.x);
if (!Z1.isOne())
{
SecP224K1Field.multiply(Z3.x, Z1.x, Z3.x);
}
return new SecP224K1Point(curve, X3, Y3, new ECFieldElement[] { Z3 });
}
public ECPoint twicePlus(ECPoint b)
{
if (this == b)
{
return threeTimes();
}
if (this.isInfinity())
{
return b;
}
if (b.isInfinity())
{
return twice();
}
ECFieldElement Y1 = this.y;
if (Y1.isZero())
{
return b;
}
return twice().add(b);
}
public ECPoint threeTimes()
{
if (this.isInfinity() || this.y.isZero())
{
return this;
}
// NOTE: Be careful about recursions between twicePlus and threeTimes
return twice().add(this);
}
public ECPoint negate()
{
if (this.isInfinity())
{
return this;
}
return new SecP224K1Point(curve, this.x, this.y.negate(), this.zs);
}
}