All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.math.ec.custom.sec.SecP256R1Point Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.

The newest version!
package org.bouncycastle.math.ec.custom.sec;

import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.raw.Nat;
import org.bouncycastle.math.raw.Nat256;

public class SecP256R1Point extends ECPoint.AbstractFp
{
    SecP256R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
    {
        super(curve, x, y);
    }

    SecP256R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs)
    {
        super(curve, x, y, zs);
    }

    protected ECPoint detach()
    {
        return new SecP256R1Point(null, getAffineXCoord(), getAffineYCoord());
    }

    public ECPoint add(ECPoint b)
    {
        if (this.isInfinity())
        {
            return b;
        }
        if (b.isInfinity())
        {
            return this;
        }
        if (this == b)
        {
            return twice();
        }

        ECCurve curve = this.getCurve();

        SecP256R1FieldElement X1 = (SecP256R1FieldElement)this.x, Y1 = (SecP256R1FieldElement)this.y;
        SecP256R1FieldElement X2 = (SecP256R1FieldElement)b.getXCoord(), Y2 = (SecP256R1FieldElement)b.getYCoord();

        SecP256R1FieldElement Z1 = (SecP256R1FieldElement)this.zs[0];
        SecP256R1FieldElement Z2 = (SecP256R1FieldElement)b.getZCoord(0);

        int c;
        int[] tt0 = Nat256.createExt();
        int[] tt1 = Nat256.createExt();
        int[] t2 = Nat256.create();
        int[] t3 = Nat256.create();
        int[] t4 = Nat256.create();

        boolean Z1IsOne = Z1.isOne();
        int[] U2, S2;
        if (Z1IsOne)
        {
            U2 = X2.x;
            S2 = Y2.x;
        }
        else
        {
            S2 = t3;
            SecP256R1Field.square(Z1.x, S2, tt0);

            U2 = t2;
            SecP256R1Field.multiply(S2, X2.x, U2, tt0);

            SecP256R1Field.multiply(S2, Z1.x, S2, tt0);
            SecP256R1Field.multiply(S2, Y2.x, S2, tt0);
        }

        boolean Z2IsOne = Z2.isOne();
        int[] U1, S1;
        if (Z2IsOne)
        {
            U1 = X1.x;
            S1 = Y1.x;
        }
        else
        {
            S1 = t4;
            SecP256R1Field.square(Z2.x, S1, tt0);

            U1 = tt1;
            SecP256R1Field.multiply(S1, X1.x, U1, tt0);

            SecP256R1Field.multiply(S1, Z2.x, S1, tt0);
            SecP256R1Field.multiply(S1, Y1.x, S1, tt0);
        }

        int[] H = Nat256.create();
        SecP256R1Field.subtract(U1, U2, H);

        int[] R = t2;
        SecP256R1Field.subtract(S1, S2, R);

        // Check if b == this or b == -this
        if (Nat256.isZero(H))
        {
            if (Nat256.isZero(R))
            {
                // this == b, i.e. this must be doubled
                return this.twice();
            }

            // this == -b, i.e. the result is the point at infinity
            return curve.getInfinity();
        }

        int[] HSquared = t3;
        SecP256R1Field.square(H, HSquared, tt0);

        int[] G = Nat256.create();
        SecP256R1Field.multiply(HSquared, H, G, tt0);

        int[] V = t3;
        SecP256R1Field.multiply(HSquared, U1, V, tt0);

        SecP256R1Field.negate(G, G);
        Nat256.mul(S1, G, tt1);

        c = Nat256.addBothTo(V, V, G);
        SecP256R1Field.reduce32(c, G);

        SecP256R1FieldElement X3 = new SecP256R1FieldElement(t4);
        SecP256R1Field.square(R, X3.x, tt0);
        SecP256R1Field.subtract(X3.x, G, X3.x);

        SecP256R1FieldElement Y3 = new SecP256R1FieldElement(G);
        SecP256R1Field.subtract(V, X3.x, Y3.x);
        SecP256R1Field.multiplyAddToExt(Y3.x, R, tt1);
        SecP256R1Field.reduce(tt1, Y3.x);

        SecP256R1FieldElement Z3 = new SecP256R1FieldElement(H);
        if (!Z1IsOne)
        {
            SecP256R1Field.multiply(Z3.x, Z1.x, Z3.x, tt0);
        }
        if (!Z2IsOne)
        {
            SecP256R1Field.multiply(Z3.x, Z2.x, Z3.x, tt0);
        }

        ECFieldElement[] zs = new ECFieldElement[]{ Z3 };

        return new SecP256R1Point(curve, X3, Y3, zs);
    }

    public ECPoint twice()
    {
        if (this.isInfinity())
        {
            return this;
        }

        ECCurve curve = this.getCurve();

        SecP256R1FieldElement Y1 = (SecP256R1FieldElement)this.y;
        if (Y1.isZero())
        {
            return curve.getInfinity();
        }

        SecP256R1FieldElement X1 = (SecP256R1FieldElement)this.x, Z1 = (SecP256R1FieldElement)this.zs[0];

        int c;
        int[] tt0 = Nat256.createExt();
        int[] t1 = Nat256.create();
        int[] t2 = Nat256.create();

        int[] Y1Squared = Nat256.create();
        SecP256R1Field.square(Y1.x, Y1Squared, tt0);

        int[] T = Nat256.create();
        SecP256R1Field.square(Y1Squared, T, tt0);

        boolean Z1IsOne = Z1.isOne();

        int[] Z1Squared = Z1.x;
        if (!Z1IsOne)
        {
            Z1Squared = t2;
            SecP256R1Field.square(Z1.x, Z1Squared, tt0);
        }

        SecP256R1Field.subtract(X1.x, Z1Squared, t1);

        int[] M = t2;
        SecP256R1Field.add(X1.x, Z1Squared, M);
        SecP256R1Field.multiply(M, t1, M, tt0);
        c = Nat256.addBothTo(M, M, M);
        SecP256R1Field.reduce32(c, M);

        int[] S = Y1Squared;
        SecP256R1Field.multiply(Y1Squared, X1.x, S, tt0);
        c = Nat.shiftUpBits(8, S, 2, 0);
        SecP256R1Field.reduce32(c, S);

        c = Nat.shiftUpBits(8, T, 3, 0, t1);
        SecP256R1Field.reduce32(c, t1);

        SecP256R1FieldElement X3 = new SecP256R1FieldElement(T);
        SecP256R1Field.square(M, X3.x, tt0);
        SecP256R1Field.subtract(X3.x, S, X3.x);
        SecP256R1Field.subtract(X3.x, S, X3.x);

        SecP256R1FieldElement Y3 = new SecP256R1FieldElement(S);
        SecP256R1Field.subtract(S, X3.x, Y3.x);
        SecP256R1Field.multiply(Y3.x, M, Y3.x, tt0);
        SecP256R1Field.subtract(Y3.x, t1, Y3.x);

        SecP256R1FieldElement Z3 = new SecP256R1FieldElement(M);
        SecP256R1Field.twice(Y1.x, Z3.x);
        if (!Z1IsOne)
        {
            SecP256R1Field.multiply(Z3.x, Z1.x, Z3.x, tt0);
        }

        return new SecP256R1Point(curve, X3, Y3, new ECFieldElement[]{ Z3 });
    }

    public ECPoint twicePlus(ECPoint b)
    {
        if (this == b)
        {
            return threeTimes();
        }
        if (this.isInfinity())
        {
            return b;
        }
        if (b.isInfinity())
        {
            return twice();
        }

        ECFieldElement Y1 = this.y;
        if (Y1.isZero())
        {
            return b;
        }

        return twice().add(b);
    }

    public ECPoint threeTimes()
    {
        if (this.isInfinity() || this.y.isZero())
        {
            return this;
        }

        // NOTE: Be careful about recursions between twicePlus and threeTimes
        return twice().add(this);
    }

    public ECPoint negate()
    {
        if (this.isInfinity())
        {
            return this;
        }

        return new SecP256R1Point(curve, this.x, this.y.negate(), this.zs);
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy