All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.math.ec.custom.sec.SecP384R1FieldElement Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.

The newest version!
package org.bouncycastle.math.ec.custom.sec;

import java.math.BigInteger;

import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.raw.Nat;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.encoders.Hex;

public class SecP384R1FieldElement extends ECFieldElement.AbstractFp
{
    public static final BigInteger Q = new BigInteger(1,
        Hex.decodeStrict("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF"));

    protected int[] x;

    public SecP384R1FieldElement(BigInteger x)
    {
        if (x == null || x.signum() < 0 || x.compareTo(Q) >= 0)
        {
            throw new IllegalArgumentException("x value invalid for SecP384R1FieldElement");
        }

        this.x = SecP384R1Field.fromBigInteger(x);
    }

    public SecP384R1FieldElement()
    {
        this.x = Nat.create(12);
    }

    protected SecP384R1FieldElement(int[] x)
    {
        this.x = x;
    }

    public boolean isZero()
    {
        return Nat.isZero(12, x);
    }

    public boolean isOne()
    {
        return Nat.isOne(12, x);
    }

    public boolean testBitZero()
    {
        return Nat.getBit(x, 0) == 1;
    }

    public BigInteger toBigInteger()
    {
        return Nat.toBigInteger(12, x);
    }

    public String getFieldName()
    {
        return "SecP384R1Field";
    }

    public int getFieldSize()
    {
        return Q.bitLength();
    }

    public ECFieldElement add(ECFieldElement b)
    {
        int[] z = Nat.create(12);
        SecP384R1Field.add(x, ((SecP384R1FieldElement)b).x, z);
        return new SecP384R1FieldElement(z);
    }

    public ECFieldElement addOne()
    {
        int[] z = Nat.create(12);
        SecP384R1Field.addOne(x, z);
        return new SecP384R1FieldElement(z);
    }

    public ECFieldElement subtract(ECFieldElement b)
    {
        int[] z = Nat.create(12);
        SecP384R1Field.subtract(x, ((SecP384R1FieldElement)b).x, z);
        return new SecP384R1FieldElement(z);
    }

    public ECFieldElement multiply(ECFieldElement b)
    {
        int[] z = Nat.create(12);
        SecP384R1Field.multiply(x, ((SecP384R1FieldElement)b).x, z);
        return new SecP384R1FieldElement(z);
    }

    public ECFieldElement divide(ECFieldElement b)
    {
//        return multiply(b.invert());
        int[] z = Nat.create(12);
        SecP384R1Field.inv(((SecP384R1FieldElement)b).x, z);
        SecP384R1Field.multiply(z, x, z);
        return new SecP384R1FieldElement(z);
    }

    public ECFieldElement negate()
    {
        int[] z = Nat.create(12);
        SecP384R1Field.negate(x, z);
        return new SecP384R1FieldElement(z);
    }

    public ECFieldElement square()
    {
        int[] z = Nat.create(12);
        SecP384R1Field.square(x, z);
        return new SecP384R1FieldElement(z);
    }

    public ECFieldElement invert()
    {
//        return new SecP384R1FieldElement(toBigInteger().modInverse(Q));
        int[] z = Nat.create(12);
        SecP384R1Field.inv(x, z);
        return new SecP384R1FieldElement(z);
    }

    /**
     * return a sqrt root - the routine verifies that the calculation returns the right value - if
     * none exists it returns null.
     */
    public ECFieldElement sqrt()
    {
        // Raise this element to the exponent 2^382 - 2^126 - 2^94 + 2^30

        int[] x1 = this.x;
        if (Nat.isZero(12, x1) || Nat.isOne(12, x1))
        {
            return this;
        }

        int[] tt0 = Nat.create(24);
        int[] t1 = Nat.create(12);
        int[] t2 = Nat.create(12);
        int[] t3 = Nat.create(12);
        int[] t4 = Nat.create(12);

        SecP384R1Field.square(x1, t1, tt0);
        SecP384R1Field.multiply(t1, x1, t1, tt0);

        SecP384R1Field.squareN(t1, 2, t2, tt0);
        SecP384R1Field.multiply(t2, t1, t2, tt0);

        SecP384R1Field.square(t2, t2, tt0);
        SecP384R1Field.multiply(t2, x1, t2, tt0);

        SecP384R1Field.squareN(t2, 5, t3, tt0);
        SecP384R1Field.multiply(t3, t2, t3, tt0);

        SecP384R1Field.squareN(t3, 5, t4, tt0);
        SecP384R1Field.multiply(t4, t2, t4, tt0);

        SecP384R1Field.squareN(t4, 15, t2, tt0);
        SecP384R1Field.multiply(t2, t4, t2, tt0);

        SecP384R1Field.squareN(t2, 2, t3, tt0);
        SecP384R1Field.multiply(t1, t3, t1, tt0);

        SecP384R1Field.squareN(t3, 28, t3, tt0);
        SecP384R1Field.multiply(t2, t3, t2, tt0);

        SecP384R1Field.squareN(t2, 60, t3, tt0);
        SecP384R1Field.multiply(t3, t2, t3, tt0);

        int[] r = t2;

        SecP384R1Field.squareN(t3, 120, r, tt0);
        SecP384R1Field.multiply(r, t3, r, tt0);

        SecP384R1Field.squareN(r, 15, r, tt0);
        SecP384R1Field.multiply(r, t4, r, tt0);

        SecP384R1Field.squareN(r, 33, r, tt0);
        SecP384R1Field.multiply(r, t1, r, tt0);

        SecP384R1Field.squareN(r, 64, r, tt0);
        SecP384R1Field.multiply(r, x1, r, tt0);

        SecP384R1Field.squareN(r, 30, t1, tt0);
        SecP384R1Field.square(t1, t2, tt0);

        return Nat.eq(12, x1, t2) ? new SecP384R1FieldElement(t1) : null;
    }

    public boolean equals(Object other)
    {
        if (other == this)
        {
            return true;
        }

        if (!(other instanceof SecP384R1FieldElement))
        {
            return false;
        }

        SecP384R1FieldElement o = (SecP384R1FieldElement)other;
        return Nat.eq(12, x, o.x);
    }

    public int hashCode()
    {
        return Q.hashCode() ^ Arrays.hashCode(x, 0, 12);
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy