All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.pqc.crypto.crystals.kyber.Ntt Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.

The newest version!
package org.bouncycastle.pqc.crypto.crystals.kyber;

class Ntt
{

    public static final short[] nttZetas = new short[]{
        2285, 2571, 2970, 1812, 1493, 1422, 287, 202, 3158, 622, 1577, 182, 962,
        2127, 1855, 1468, 573, 2004, 264, 383, 2500, 1458, 1727, 3199, 2648, 1017,
        732, 608, 1787, 411, 3124, 1758, 1223, 652, 2777, 1015, 2036, 1491, 3047,
        1785, 516, 3321, 3009, 2663, 1711, 2167, 126, 1469, 2476, 3239, 3058, 830,
        107, 1908, 3082, 2378, 2931, 961, 1821, 2604, 448, 2264, 677, 2054, 2226,
        430, 555, 843, 2078, 871, 1550, 105, 422, 587, 177, 3094, 3038, 2869, 1574,
        1653, 3083, 778, 1159, 3182, 2552, 1483, 2727, 1119, 1739, 644, 2457, 349,
        418, 329, 3173, 3254, 817, 1097, 603, 610, 1322, 2044, 1864, 384, 2114, 3193,
        1218, 1994, 2455, 220, 2142, 1670, 2144, 1799, 2051, 794, 1819, 2475, 2459,
        478, 3221, 3021, 996, 991, 958, 1869, 1522, 1628};

    public static final short[] nttZetasInv = new short[]{
        1701, 1807, 1460, 2371, 2338, 2333, 308, 108, 2851, 870, 854, 1510, 2535,
        1278, 1530, 1185, 1659, 1187, 3109, 874, 1335, 2111, 136, 1215, 2945, 1465,
        1285, 2007, 2719, 2726, 2232, 2512, 75, 156, 3000, 2911, 2980, 872, 2685,
        1590, 2210, 602, 1846, 777, 147, 2170, 2551, 246, 1676, 1755, 460, 291, 235,
        3152, 2742, 2907, 3224, 1779, 2458, 1251, 2486, 2774, 2899, 1103, 1275, 2652,
        1065, 2881, 725, 1508, 2368, 398, 951, 247, 1421, 3222, 2499, 271, 90, 853,
        1860, 3203, 1162, 1618, 666, 320, 8, 2813, 1544, 282, 1838, 1293, 2314, 552,
        2677, 2106, 1571, 205, 2918, 1542, 2721, 2597, 2312, 681, 130, 1602, 1871,
        829, 2946, 3065, 1325, 2756, 1861, 1474, 1202, 2367, 3147, 1752, 2707, 171,
        3127, 3042, 1907, 1836, 1517, 359, 758, 1441};

    public static short[] ntt(short[] inp)
    {
        short[] r = new short[KyberEngine.KyberN];
        System.arraycopy(inp, 0, r, 0, r.length);
        int len, start, j, k;
        short t, zeta;

        k = 1;
        for (len = 128; len >= 2; len >>= 1)
        {
            for (start = 0; start < 256; start = j + len)
            {
                zeta = nttZetas[k++];
                for (j = start; j < start + len; ++j)
                {
                    t = factorQMulMont(zeta, r[j + len]);
                    r[j + len] = (short)(r[j] - t);
                    r[j] = (short)(r[j] + t);
                }
            }
        }
        return r;
    }

    public static short[] invNtt(short[] inp)
    {
        short[] r = new short[KyberEngine.KyberN];
        System.arraycopy(inp, 0, r, 0, KyberEngine.KyberN);
        int len, start, j, k;
        short t, zeta;
        k = 0;
        for (len = 2; len <= 128; len <<= 1)
        {
            for (start = 0; start < 256; start = j + len)
            {
                zeta = nttZetasInv[k++];
                for (j = start; j < start + len; ++j)
                {
                    t = r[j];
                    r[j] = Reduce.barretReduce((short)(t + r[j + len]));
                    r[j + len] = (short)(t - r[j + len]);
                    r[j + len] = factorQMulMont(zeta, r[j + len]);

                }
            }
        }

        for (j = 0; j < 256; ++j)
        {
            r[j] = factorQMulMont(r[j], Ntt.nttZetasInv[127]);
        }
        return r;
    }

    public static short factorQMulMont(short a, short b)
    {
        return Reduce.montgomeryReduce((int)(a * b));
    }

    public static void baseMult(Poly outPoly, int outIndex, short a0, short a1, short b0, short b1, short zeta)
    {
        short outVal0 = factorQMulMont(a1, b1);
        outVal0 = factorQMulMont(outVal0, zeta);
        outVal0 += factorQMulMont(a0, b0);
        outPoly.setCoeffIndex(outIndex, outVal0);

        short outVal1 = factorQMulMont(a0, b1);
        outVal1 += factorQMulMont(a1, b0);
        outPoly.setCoeffIndex(outIndex + 1, outVal1);
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy