org.bouncycastle.pqc.crypto.falcon.FalconCommon Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-debug-jdk18on Show documentation
Show all versions of bcprov-ext-debug-jdk18on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.
The newest version!
package org.bouncycastle.pqc.crypto.falcon;
class FalconCommon
{
FalconCommon()
{
}
/* see inner.h */
void hash_to_point_vartime(SHAKE256 sc, short[] srcx, int x, int logn)
{
/*
* This is the straightforward per-the-spec implementation. It
* is not constant-time, thus it might reveal information on the
* plaintext (at least, enough to check the plaintext against a
* list of potential plaintexts) in a scenario where the
* attacker does not have access to the signature value or to
* the public key, but knows the nonce (without knowledge of the
* nonce, the hashed output cannot be matched against potential
* plaintexts).
*/
int n;
n = 1 << logn;
while (n > 0)
{
byte[] buf = new byte[2];
int w; // unsigned
// inner_shake256_extract(sc, (void *)buf, sizeof buf);
sc.inner_shake256_extract(buf, 0, 2);
w = ((buf[0] & 0xff) << 8) | (buf[1] & 0xff);
if (w < 61445)
{
while (w >= 12289)
{
w -= 12289;
}
srcx[x++] = (short)w;
n--;
}
}
}
void hash_to_point_ct(
SHAKE256 sc,
short[] srcx, int x, int logn, short[] srctmp, int tmp)
{
/*
* Each 16-bit sample is a value in 0..65535. The value is
* kept if it falls in 0..61444 (because 61445 = 5*12289)
* and rejected otherwise; thus, each sample has probability
* about 0.93758 of being selected.
*
* We want to oversample enough to be sure that we will
* have enough values with probability at least 1 - 2^(-256).
* Depending on degree N, this leads to the following
* required oversampling:
*
* logn n oversampling
* 1 2 65
* 2 4 67
* 3 8 71
* 4 16 77
* 5 32 86
* 6 64 100
* 7 128 122
* 8 256 154
* 9 512 205
* 10 1024 287
*
* If logn >= 7, then the provided temporary buffer is large
* enough. Otherwise, we use a stack buffer of 63 entries
* (i.e. 126 bytes) for the values that do not fit in tmp[].
*/
short overtab[] = {
0, /* unused */
65,
67,
71,
77,
86,
100,
122,
154,
205,
287
};
int n, n2, u, m, p, over;
int tt1;
short[] tt2 = new short[63];
/*
* We first generate m 16-bit value. Values 0..n-1 go to x[].
* Values n..2*n-1 go to tt1[]. Values 2*n and later go to tt2[].
* We also reduce modulo q the values; rejected values are set
* to 0xFFFF.
*/
n = 1 << logn;
n2 = n << 1;
over = overtab[logn];
m = n + over;
tt1 = tmp;
for (u = 0; u < m; u++)
{
byte[] buf = new byte[2];
int w, wr;
sc.inner_shake256_extract(buf, 0, buf.length);
w = ((buf[0] & 0xff) << 8) | (buf[1] & 0xff);
wr = w - (24578 & (((w - 24578) >>> 31) - 1));
wr = wr - (24578 & (((wr - 24578) >>> 31) - 1));
wr = wr - (12289 & (((wr - 12289) >>> 31) - 1));
wr |= ((w - 61445) >>> 31) - 1;
if (u < n)
{
srcx[x + u] = (short)wr;
}
else if (u < n2)
{
srctmp[tt1 + u - n] = (short)wr;
}
else
{
tt2[u - n2] = (short)wr;
}
}
/*
* Now we must "squeeze out" the invalid values. We do this in
* a logarithmic sequence of passes; each pass computes where a
* value should go, and moves it down by 'p' slots if necessary,
* where 'p' uses an increasing powers-of-two scale. It can be
* shown that in all cases where the loop decides that a value
* has to be moved down by p slots, the destination slot is
* "free" (i.e. contains an invalid value).
*/
for (p = 1; p <= over; p <<= 1)
{
int v;
/*
* In the loop below:
*
* - v contains the index of the final destination of
* the value; it is recomputed dynamically based on
* whether values are valid or not.
*
* - u is the index of the value we consider ("source");
* its address is s.
*
* - The loop may swap the value with the one at index
* u-p. The address of the swap destination is d.
*/
v = 0;
for (u = 0; u < m; u++)
{
int s, d;
int sp, dp;
int j, sv, dv, mk;
if (u < n)
{
sp = 1;
s = x + u;
sv = srcx[s];
}
else if (u < n2)
{
sp = 2;
s = tt1 + u - n;
sv = srctmp[s];
}
else
{
sp = 3;
s = u - n2;
sv = tt2[s];
}
/*
* The value in sv should ultimately go to
* address v, i.e. jump back by u-v slots.
*/
j = u - v;
/*
* We increment v for the next iteration, but
* only if the source value is valid. The mask
* 'mk' is -1 if the value is valid, 0 otherwise,
* so we _subtract_ mk.
*/
mk = (sv >>> 15) - 1;
v -= mk;
/*
* In this loop we consider jumps by p slots; if
* u < p then there is nothing more to do.
*/
if (u < p)
{
continue;
}
/*
* Destination for the swap: value at address u-p.
*/
if ((u - p) < n)
{
dp = 1;
d = x + u - p;
dv = srcx[d];
}
else if ((u - p) < n2)
{
dp = 2;
d = tt1 + (u - p) - n;
dv = srctmp[d];
}
else
{
dp = 3;
d = (u - p) - n2;
dv = tt2[d];
}
/*
* The swap should be performed only if the source
* is valid AND the jump j has its 'p' bit set.
*/
mk &= -(((j & p) + 0x1FF) >> 9);
if (sp == 1)
{
srcx[s] = (short)(sv ^ (mk & (sv ^ dv)));
}
else if (sp == 2)
{
srctmp[s] = (short)(sv ^ (mk & (sv ^ dv)));
}
else
{
tt2[s] = (short)(sv ^ (mk & (sv ^ dv)));
}
if (dp == 1)
{
srcx[d] = (short)(dv ^ (mk & (sv ^ dv)));
}
else if (dp == 2)
{
srctmp[d] = (short)(dv ^ (mk & (sv ^ dv)));
}
else
{
tt2[d] = (short)(dv ^ (mk & (sv ^ dv)));
}
}
}
}
/*
* Acceptance bound for the (squared) l2-norm of the signature depends
* on the degree. This array is indexed by logn (1 to 10). These bounds
* are _inclusive_ (they are equal to floor(beta^2)).
*/
static final int l2bound[] = {
0, /* unused */
101498,
208714,
428865,
892039,
1852696,
3842630,
7959734,
16468416,
34034726,
70265242
};
/* see inner.h */
int is_short(
short[] srcs1, int s1, short[] srcs2, int s2, int logn)
{
/*
* We use the l2-norm. Code below uses only 32-bit operations to
* compute the square of the norm with saturation to 2^32-1 if
* the value exceeds 2^31-1.
*/
int n, u;
int s, ng;
n = 1 << logn;
s = 0;
ng = 0;
for (u = 0; u < n; u++)
{
int z;
z = srcs1[s1 + u];
s += (z * z);
ng |= s;
z = srcs2[s2 + u];
s += (z * z);
ng |= s;
}
s |= -(ng >>> 31);
return (s & 0xffffffffL) <= l2bound[logn] ? 1 : 0;
}
/* see inner.h */
int is_short_half(
int sqn, short[] srcs2, int s2, int logn)
{
int n, u;
int ng;
n = 1 << logn;
ng = -(sqn >>> 31);
for (u = 0; u < n; u++)
{
int z;
z = srcs2[s2 + u];
sqn += (z * z);
ng |= sqn;
}
sqn |= -(ng >>> 31);
return ((sqn & 0xffffffffL) <= l2bound[logn]) ? 1 : 0;
}
}