All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.pqc.crypto.falcon.FalconSign Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.

The newest version!
package org.bouncycastle.pqc.crypto.falcon;

class FalconSign
{

    FPREngine fpr;
    FalconFFT fft;
    FalconCommon common;

    FalconSign()
    {
        this.fpr = new FPREngine();
        this.fft = new FalconFFT();
        this.common = new FalconCommon();
    }

    private static int MKN(int logn)
    {
        return 1 << logn;
    }

    /*
     * Binary case:
     *   N = 2^logn
     *   phi = X^N+1
     */

    /*
     * Get the size of the LDL tree for an input with polynomials of size
     * 2^logn. The size is expressed in the number of elements.
     */
    int ffLDL_treesize(int logn)
    {
        /*
         * For logn = 0 (polynomials are constant), the "tree" is a
         * single element. Otherwise, the tree node has size 2^logn, and
         * has two child trees for size logn-1 each. Thus, treesize s()
         * must fulfill these two relations:
         *
         *   s(0) = 1
         *   s(logn) = (2^logn) + 2*s(logn-1)
         */
        return (logn + 1) << logn;
    }

    /*
     * Inner function for ffLDL_fft(). It expects the matrix to be both
     * auto-adjoint and quasicyclic; also, it uses the source operands
     * as modifiable temporaries.
     *
     * tmp[] must have room for at least one polynomial.
     */
    void ffLDL_fft_inner(FalconFPR[] srctree, int tree,
                         FalconFPR[] srcg0, int g0, FalconFPR[] srcg1, int g1,
                         int logn, FalconFPR[] srctmp, int tmp)
    {
        int n, hn;

        n = MKN(logn);
        if (n == 1)
        {
            srctree[tree + 0] = srcg0[g0 + 0];
            return;
        }
        hn = n >> 1;

        /*
         * The LDL decomposition yields L (which is written in the tree)
         * and the diagonal of D. Since d00 = g0, we just write d11
         * into tmp.
         */
        fft.poly_LDLmv_fft(srctmp, tmp, srctree, tree, srcg0, g0, srcg1, g1, srcg0, g0, logn);

        /*
         * Split d00 (currently in g0) and d11 (currently in tmp). We
         * reuse g0 and g1 as temporary storage spaces:
         *   d00 splits into g1, g1+hn
         *   d11 splits into g0, g0+hn
         */
        fft.poly_split_fft(srcg1, g1, srcg1, g1 + hn, srcg0, g0, logn);
        fft.poly_split_fft(srcg0, g0, srcg0, g0 + hn, srctmp, tmp, logn);

        /*
         * Each split result is the first row of a new auto-adjoint
         * quasicyclic matrix for the next recursive step.
         */
        ffLDL_fft_inner(srctree, tree + n,
            srcg1, g1, srcg1, g1 + hn, logn - 1, srctmp, tmp);
        ffLDL_fft_inner(srctree, tree + n + ffLDL_treesize(logn - 1),
            srcg0, g0, srcg0, g0 + hn, logn - 1, srctmp, tmp);
    }

    /*
     * Compute the ffLDL tree of an auto-adjoint matrix G. The matrix
     * is provided as three polynomials (FFT representation).
     *
     * The "tree" array is filled with the computed tree, of size
     * (logn+1)*(2^logn) elements (see ffLDL_treesize()).
     *
     * Input arrays MUST NOT overlap, except possibly the three unmodified
     * arrays g00, g01 and g11. tmp[] should have room for at least three
     * polynomials of 2^logn elements each.
     */
    void ffLDL_fft(FalconFPR[] srctree, int tree, FalconFPR[] srcg00, int g00,
                   FalconFPR[] srcg01, int g01, FalconFPR[] srcg11, int g11,
                   int logn, FalconFPR[] srctmp, int tmp)
    {
        int n, hn;
        int d00, d11;

        n = MKN(logn);
        if (n == 1)
        {
            srctree[tree + 0] = srcg00[g00 + 0];
            return;
        }
        hn = n >> 1;
        d00 = tmp;
        d11 = tmp + n;
        tmp += n << 1;

//        memcpy(d00, g00, n * sizeof *g00);
        System.arraycopy(srcg00, g00, srctmp, d00, n);
        fft.poly_LDLmv_fft(srctmp, d11, srctree, tree, srcg00, g00, srcg01, g01, srcg11, g11, logn);

        fft.poly_split_fft(srctmp, tmp, srctmp, tmp + hn, srctmp, d00, logn);
        fft.poly_split_fft(srctmp, d00, srctmp, d00 + hn, srctmp, d11, logn);
//        memcpy(d11, tmp, n * sizeof *tmp);
        System.arraycopy(srctmp, tmp, srctmp, d11, n);
        ffLDL_fft_inner(srctree, tree + n,
            srctmp, d11, srctmp, d11 + hn, logn - 1, srctmp, tmp);
        ffLDL_fft_inner(srctree, tree + n + ffLDL_treesize(logn - 1),
            srctmp, d00, srctmp, d00 + hn, logn - 1, srctmp, tmp);
    }

    /*
     * Normalize an ffLDL tree: each leaf of value x is replaced with
     * sigma / sqrt(x).
     */
    void ffLDL_binary_normalize(FalconFPR[] srctree, int tree, int orig_logn, int logn)
    {
        /*
         * TODO: make an iterative version.
         */
        int n;

        n = MKN(logn);
        if (n == 1)
        {
            /*
             * We actually store in the tree leaf the inverse of
             * the value mandated by the specification: this
             * saves a division both here and in the sampler.
             */
            srctree[tree + 0] = fpr.fpr_mul(fpr.fpr_sqrt(srctree[tree + 0]), fpr.fpr_inv_sigma[orig_logn]);
        }
        else
        {
            ffLDL_binary_normalize(srctree, tree + n, orig_logn, logn - 1);
            ffLDL_binary_normalize(srctree, tree + n + ffLDL_treesize(logn - 1),
                orig_logn, logn - 1);
        }
    }

    /* =================================================================== */

    /*
     * Convert an integer polynomial (with small values) into the
     * representation with complex numbers.
     */
    void smallints_to_fpr(FalconFPR[] srcr, int r, byte[] srct, int t, int logn)
    {
        int n, u;

        n = MKN(logn);
        for (u = 0; u < n; u++)
        {
            srcr[r + u] = fpr.fpr_of(srct[t + u]); // t is signed
        }
    }

    /*
     * The expanded private key contains:
     *  - The B0 matrix (four elements)
     *  - The ffLDL tree
     */

    int skoff_b00(int logn)
    {
//        (void)logn;
        return 0;
    }

    int skoff_b01(int logn)
    {
        return MKN(logn);
    }

    int skoff_b10(int logn)
    {
        return 2 * MKN(logn);
    }

    int skoff_b11(int logn)
    {
        return 3 * MKN(logn);
    }

    int skoff_tree(int logn)
    {
        return 4 * MKN(logn);
    }

    /* see inner.h */
    void expand_privkey(FalconFPR[] srcexpanded_key, int expanded_key,
                        byte[] srcf, int f, byte[] srcg, int g,
                        byte[] srcF, int F, byte[] srcG, int G,
                        int logn, FalconFPR[] srctmp, int tmp)
    {
        int n;
        int rf, rg, rF, rG;
        int b00, b01, b10, b11;
        int g00, g01, g11, gxx;
        int tree;

        n = MKN(logn);
        b00 = expanded_key + skoff_b00(logn);
        b01 = expanded_key + skoff_b01(logn);
        b10 = expanded_key + skoff_b10(logn);
        b11 = expanded_key + skoff_b11(logn);
        tree = expanded_key + skoff_tree(logn);

        /*
         * We load the private key elements directly into the B0 matrix,
         * since B0 = [[g, -f], [G, -F]].
         */
        rf = b01;
        rg = b00;
        rF = b11;
        rG = b10;

        smallints_to_fpr(srcexpanded_key, rf, srcf, f, logn);
        smallints_to_fpr(srcexpanded_key, rg, srcg, g, logn);
        smallints_to_fpr(srcexpanded_key, rF, srcF, F, logn);
        smallints_to_fpr(srcexpanded_key, rG, srcG, G, logn);

        /*
         * Compute the FFT for the key elements, and negate f and F.
         */
        fft.FFT(srcexpanded_key, rf, logn);
        fft.FFT(srcexpanded_key, rg, logn);
        fft.FFT(srcexpanded_key, rF, logn);
        fft.FFT(srcexpanded_key, rG, logn);
        fft.poly_neg(srcexpanded_key, rf, logn);
        fft.poly_neg(srcexpanded_key, rF, logn);

        /*
         * The Gram matrix is G = B·B*. Formulas are:
         *   g00 = b00*adj(b00) + b01*adj(b01)
         *   g01 = b00*adj(b10) + b01*adj(b11)
         *   g10 = b10*adj(b00) + b11*adj(b01)
         *   g11 = b10*adj(b10) + b11*adj(b11)
         *
         * For historical reasons, this implementation uses
         * g00, g01 and g11 (upper triangle).
         */
        g00 = tmp; // the b__ are in srcexpanded_key and g__ are int srctmp
        g01 = g00 + n;
        g11 = g01 + n;
        gxx = g11 + n;

//        memcpy(g00, b00, n * sizeof *b00);
        System.arraycopy(srcexpanded_key, b00, srctmp, g00, n);
        fft.poly_mulselfadj_fft(srctmp, g00, logn);
//        memcpy(gxx, b01, n * sizeof *b01);
        System.arraycopy(srcexpanded_key, b01, srctmp, gxx, n);
        fft.poly_mulselfadj_fft(srctmp, gxx, logn);
        fft.poly_add(srctmp, g00, srctmp, gxx, logn);

//        memcpy(g01, b00, n * sizeof *b00);
        System.arraycopy(srcexpanded_key, b00, srctmp, g01, n);
        fft.poly_muladj_fft(srctmp, g01, srcexpanded_key, b10, logn);
//        memcpy(gxx, b01, n * sizeof *b01);
        System.arraycopy(srcexpanded_key, b01, srctmp, gxx, n);
        fft.poly_muladj_fft(srctmp, gxx, srcexpanded_key, b11, logn);
        fft.poly_add(srctmp, g01, srctmp, gxx, logn);

//        memcpy(g11, b10, n * sizeof *b10);
        System.arraycopy(srcexpanded_key, b10, srctmp, g11, n);
        fft.poly_mulselfadj_fft(srctmp, g11, logn);
//        memcpy(gxx, b11, n * sizeof *b11);
        System.arraycopy(srcexpanded_key, b11, srctmp, gxx, n);
        fft.poly_mulselfadj_fft(srctmp, gxx, logn);
        fft.poly_add(srctmp, g11, srctmp, gxx, logn);

        /*
         * Compute the Falcon tree.
         */
        ffLDL_fft(srcexpanded_key, tree, srctmp, g00, srctmp, g01, srctmp, g11, logn, srctmp, gxx);

        /*
         * Normalize tree.
         */
        ffLDL_binary_normalize(srcexpanded_key, tree, logn, logn);
    }

    /*
     * Perform Fast Fourier Sampling for target vector t. The Gram matrix
     * is provided (G = [[g00, g01], [adj(g01), g11]]). The sampled vector
     * is written over (t0,t1). The Gram matrix is modified as well. The
     * tmp[] buffer must have room for four polynomials.
     */
    void ffSampling_fft_dyntree(SamplerZ samp, SamplerCtx samp_ctx,
                                FalconFPR[] srct0, int t0, FalconFPR[] srct1, int t1,
                                FalconFPR[] srcg00, int g00, FalconFPR[] srcg01, int g01, FalconFPR[] srcg11, int g11,
                                int orig_logn, int logn, FalconFPR[] srctmp, int tmp)
    {
        int n, hn;
        int z0, z1;

        /*
         * Deepest level: the LDL tree leaf value is just g00 (the
         * array has length only 1 at this point); we normalize it
         * with regards to sigma, then use it for sampling.
         */
        if (logn == 0)
        {
            FalconFPR leaf;

            leaf = srcg00[g00 + 0];
            leaf = fpr.fpr_mul(fpr.fpr_sqrt(leaf), fpr.fpr_inv_sigma[orig_logn]);
            srct0[t0 + 0] = fpr.fpr_of(samp.sample(samp_ctx, srct0[t0 + 0], leaf));
            srct1[t1 + 0] = fpr.fpr_of(samp.sample(samp_ctx, srct1[t1 + 0], leaf));
            return;
        }

        n = 1 << logn;
        hn = n >> 1;

        /*
         * Decompose G into LDL. We only need d00 (identical to g00),
         * d11, and l10; we do that in place.
         */
        fft.poly_LDL_fft(srcg00, g00, srcg01, g01, srcg11, g11, logn);

        /*
         * Split d00 and d11 and expand them into half-size quasi-cyclic
         * Gram matrices. We also save l10 in tmp[].
         */
        fft.poly_split_fft(srctmp, tmp, srctmp, tmp + hn, srcg00, g00, logn);
//        memcpy(g00, tmp, n * sizeof *tmp);
        System.arraycopy(srctmp, tmp, srcg00, g00, n);
        fft.poly_split_fft(srctmp, tmp, srctmp, tmp + hn, srcg11, g11, logn);
//        memcpy(g11, tmp, n * sizeof *tmp);
        System.arraycopy(srctmp, tmp, srcg11, g11, n);
//        memcpy(tmp, g01, n * sizeof *g01);
        System.arraycopy(srcg01, g01, srctmp, tmp, n);
//        memcpy(g01, g00, hn * sizeof *g00);
        System.arraycopy(srcg00, g00, srcg01, g01, hn);
//        memcpy(g01 + hn, g11, hn * sizeof *g00);
        System.arraycopy(srcg11, g11, srcg01, g01 + hn, hn);

        /*
         * The half-size Gram matrices for the recursive LDL tree
         * building are now:
         *   - left sub-tree: g00, g00+hn, g01
         *   - right sub-tree: g11, g11+hn, g01+hn
         * l10 is in tmp[].
         */

        /*
         * We split t1 and use the first recursive call on the two
         * halves, using the right sub-tree. The result is merged
         * back into tmp + 2*n.
         */
        z1 = tmp + n;
        fft.poly_split_fft(srctmp, z1, srctmp, z1 + hn, srct1, t1, logn);
        ffSampling_fft_dyntree(samp, samp_ctx, srctmp, z1, srctmp, z1 + hn,
            srcg11, g11, srcg11, g11 + hn, srcg01, g01 + hn, orig_logn, logn - 1, srctmp, z1 + n);
        fft.poly_merge_fft(srctmp, tmp + (n << 1), srctmp, z1, srctmp, z1 + hn, logn);

        /*
         * Compute tb0 = t0 + (t1 - z1) * l10.
         * At that point, l10 is in tmp, t1 is unmodified, and z1 is
         * in tmp + (n << 1). The buffer in z1 is free.
         *
         * In the end, z1 is written over t1, and tb0 is in t0.
         */
//        memcpy(z1, t1, n * sizeof *t1);
        System.arraycopy(srct1, t1, srctmp, z1, n);
        fft.poly_sub(srctmp, z1, srctmp, tmp + (n << 1), logn);
//        memcpy(t1, tmp + (n << 1), n * sizeof *tmp);
        System.arraycopy(srctmp, tmp + (n << 1), srct1, t1, n);
        fft.poly_mul_fft(srctmp, tmp, srctmp, z1, logn);
        fft.poly_add(srct0, t0, srctmp, tmp, logn);

        /*
         * Second recursive invocation, on the split tb0 (currently in t0)
         * and the left sub-tree.
         */
        z0 = tmp;
        fft.poly_split_fft(srctmp, z0, srctmp, z0 + hn, srct0, t0, logn);
        ffSampling_fft_dyntree(samp, samp_ctx, srctmp, z0, srctmp, z0 + hn,
            srcg00, g00, srcg00, g00 + hn, srcg01, g01, orig_logn, logn - 1, srctmp, z0 + n);
        fft.poly_merge_fft(srct0, t0, srctmp, z0, srctmp, z0 + hn, logn);
    }

    /*
     * Perform Fast Fourier Sampling for target vector t and LDL tree T.
     * tmp[] must have size for at least two polynomials of size 2^logn.
     */
    void ffSampling_fft(SamplerZ samp, SamplerCtx samp_ctx,
                        FalconFPR[] srcz0, int z0, FalconFPR[] srcz1, int z1,
                        FalconFPR[] srctree, int tree,
                        FalconFPR[] srct0, int t0, FalconFPR[] srct1, int t1, int logn,
                        FalconFPR[] srctmp, int tmp)
    {
        int n, hn;
        int tree0, tree1;

        /*
         * When logn == 2, we inline the last two recursion levels.
         */
        if (logn == 2)
        {
            FalconFPR x0, x1, y0, y1, w0, w1, w2, w3, sigma;
            FalconFPR a_re, a_im, b_re, b_im, c_re, c_im;

            tree0 = tree + 4;
            tree1 = tree + 8;

            /*
             * We split t1 into w*, then do the recursive invocation,
             * with output in w*. We finally merge back into z1.
             */
            a_re = srct1[t1 + 0];
            a_im = srct1[t1 + 2];
            b_re = srct1[t1 + 1];
            b_im = srct1[t1 + 3];
            c_re = fpr.fpr_add(a_re, b_re);
            c_im = fpr.fpr_add(a_im, b_im);
            w0 = fpr.fpr_half(c_re);
            w1 = fpr.fpr_half(c_im);
            c_re = fpr.fpr_sub(a_re, b_re);
            c_im = fpr.fpr_sub(a_im, b_im);
            w2 = fpr.fpr_mul(fpr.fpr_add(c_re, c_im), fpr.fpr_invsqrt8);
            w3 = fpr.fpr_mul(fpr.fpr_sub(c_im, c_re), fpr.fpr_invsqrt8);

            x0 = w2;
            x1 = w3;
            sigma = srctree[tree1 + 3];
            w2 = fpr.fpr_of(samp.sample(samp_ctx, x0, sigma));
            w3 = fpr.fpr_of(samp.sample(samp_ctx, x1, sigma));
            a_re = fpr.fpr_sub(x0, w2);
            a_im = fpr.fpr_sub(x1, w3);
            b_re = srctree[tree1 + 0];
            b_im = srctree[tree1 + 1];
            c_re = fpr.fpr_sub(fpr.fpr_mul(a_re, b_re), fpr.fpr_mul(a_im, b_im));
            c_im = fpr.fpr_add(fpr.fpr_mul(a_re, b_im), fpr.fpr_mul(a_im, b_re));
            x0 = fpr.fpr_add(c_re, w0);
            x1 = fpr.fpr_add(c_im, w1);
            sigma = srctree[tree1 + 2];
            w0 = fpr.fpr_of(samp.sample(samp_ctx, x0, sigma));
            w1 = fpr.fpr_of(samp.sample(samp_ctx, x1, sigma));

            a_re = w0;
            a_im = w1;
            b_re = w2;
            b_im = w3;
            c_re = fpr.fpr_mul(fpr.fpr_sub(b_re, b_im), fpr.fpr_invsqrt2);
            c_im = fpr.fpr_mul(fpr.fpr_add(b_re, b_im), fpr.fpr_invsqrt2);
            srcz1[z1 + 0] = w0 = fpr.fpr_add(a_re, c_re);
            srcz1[z1 + 2] = w2 = fpr.fpr_add(a_im, c_im);
            srcz1[z1 + 1] = w1 = fpr.fpr_sub(a_re, c_re);
            srcz1[z1 + 3] = w3 = fpr.fpr_sub(a_im, c_im);

            /*
             * Compute tb0 = t0 + (t1 - z1) * L. Value tb0 ends up in w*.
             */
            w0 = fpr.fpr_sub(srct1[t1 + 0], w0);
            w1 = fpr.fpr_sub(srct1[t1 + 1], w1);
            w2 = fpr.fpr_sub(srct1[t1 + 2], w2);
            w3 = fpr.fpr_sub(srct1[t1 + 3], w3);

            a_re = w0;
            a_im = w2;
            b_re = srctree[tree + 0];
            b_im = srctree[tree + 2];
            w0 = fpr.fpr_sub(fpr.fpr_mul(a_re, b_re), fpr.fpr_mul(a_im, b_im));
            w2 = fpr.fpr_add(fpr.fpr_mul(a_re, b_im), fpr.fpr_mul(a_im, b_re));
            a_re = w1;
            a_im = w3;
            b_re = srctree[tree + 1];
            b_im = srctree[tree + 3];
            w1 = fpr.fpr_sub(fpr.fpr_mul(a_re, b_re), fpr.fpr_mul(a_im, b_im));
            w3 = fpr.fpr_add(fpr.fpr_mul(a_re, b_im), fpr.fpr_mul(a_im, b_re));

            w0 = fpr.fpr_add(w0, srct0[t0 + 0]);
            w1 = fpr.fpr_add(w1, srct0[t0 + 1]);
            w2 = fpr.fpr_add(w2, srct0[t0 + 2]);
            w3 = fpr.fpr_add(w3, srct0[t0 + 3]);

            /*
             * Second recursive invocation.
             */
            a_re = w0;
            a_im = w2;
            b_re = w1;
            b_im = w3;
            c_re = fpr.fpr_add(a_re, b_re);
            c_im = fpr.fpr_add(a_im, b_im);
            w0 = fpr.fpr_half(c_re);
            w1 = fpr.fpr_half(c_im);
            c_re = fpr.fpr_sub(a_re, b_re);
            c_im = fpr.fpr_sub(a_im, b_im);
            w2 = fpr.fpr_mul(fpr.fpr_add(c_re, c_im), fpr.fpr_invsqrt8);
            w3 = fpr.fpr_mul(fpr.fpr_sub(c_im, c_re), fpr.fpr_invsqrt8);

            x0 = w2;
            x1 = w3;
            sigma = srctree[tree0 + 3];
            w2 = y0 = fpr.fpr_of(samp.sample(samp_ctx, x0, sigma));
            w3 = y1 = fpr.fpr_of(samp.sample(samp_ctx, x1, sigma));
            a_re = fpr.fpr_sub(x0, y0);
            a_im = fpr.fpr_sub(x1, y1);
            b_re = srctree[tree0 + 0];
            b_im = srctree[tree0 + 1];
            c_re = fpr.fpr_sub(fpr.fpr_mul(a_re, b_re), fpr.fpr_mul(a_im, b_im));
            c_im = fpr.fpr_add(fpr.fpr_mul(a_re, b_im), fpr.fpr_mul(a_im, b_re));
            x0 = fpr.fpr_add(c_re, w0);
            x1 = fpr.fpr_add(c_im, w1);
            sigma = srctree[tree0 + 2];
            w0 = fpr.fpr_of(samp.sample(samp_ctx, x0, sigma));
            w1 = fpr.fpr_of(samp.sample(samp_ctx, x1, sigma));

            a_re = w0;
            a_im = w1;
            b_re = w2;
            b_im = w3;
            c_re = fpr.fpr_mul(fpr.fpr_sub(b_re, b_im), fpr.fpr_invsqrt2);
            c_im = fpr.fpr_mul(fpr.fpr_add(b_re, b_im), fpr.fpr_invsqrt2);
            srcz0[z0 + 0] = fpr.fpr_add(a_re, c_re);
            srcz0[z0 + 2] = fpr.fpr_add(a_im, c_im);
            srcz0[z0 + 1] = fpr.fpr_sub(a_re, c_re);
            srcz0[z0 + 3] = fpr.fpr_sub(a_im, c_im);

            return;
        }

        /*
         * Case logn == 1 is reachable only when using Falcon-2 (the
         * smallest size for which Falcon is mathematically defined, but
         * of course way too insecure to be of any use).
         */
        if (logn == 1)
        {
            FalconFPR x0, x1, y0, y1, sigma;
            FalconFPR a_re, a_im, b_re, b_im, c_re, c_im;

            x0 = srct1[t1 + 0];
            x1 = srct1[t1 + 1];
            sigma = srctree[tree + 3];
            srcz1[z1 + 0] = y0 = fpr.fpr_of(samp.sample(samp_ctx, x0, sigma));
            srcz1[z1 + 1] = y1 = fpr.fpr_of(samp.sample(samp_ctx, x1, sigma));
            a_re = fpr.fpr_sub(x0, y0);
            a_im = fpr.fpr_sub(x1, y1);
            b_re = srctree[tree + 0];
            b_im = srctree[tree + 1];
            c_re = fpr.fpr_sub(fpr.fpr_mul(a_re, b_re), fpr.fpr_mul(a_im, b_im));
            c_im = fpr.fpr_add(fpr.fpr_mul(a_re, b_im), fpr.fpr_mul(a_im, b_re));
            x0 = fpr.fpr_add(c_re, srct0[t0 + 0]);
            x1 = fpr.fpr_add(c_im, srct0[t0 + 1]);
            sigma = srctree[tree + 2];
            srcz0[z0 + 0] = fpr.fpr_of(samp.sample(samp_ctx, x0, sigma));
            srcz0[z0 + 1] = fpr.fpr_of(samp.sample(samp_ctx, x1, sigma));

            return;
        }

    /*
     * Normal end of recursion is for logn == 0. Since the last
     * steps of the recursions were inlined in the blocks above
     * (when logn == 1 or 2), this case is not reachable, and is
     * retained here only for documentation purposes.

    if (logn == 0) {
        fpr x0, x1, sigma;

        x0 = t0[0];
        x1 = t1[0];
        sigma = tree[0];
        z0[0] = fpr_of(samp(samp_ctx, x0, sigma));
        z1[0] = fpr_of(samp(samp_ctx, x1, sigma));
        return;
    }

     */

        /*
         * General recursive case (logn >= 3).
         */

        n = 1 << logn;
        hn = n >> 1;
        tree0 = tree + n;
        tree1 = tree + n + ffLDL_treesize(logn - 1);

        /*
         * We split t1 into z1 (reused as temporary storage), then do
         * the recursive invocation, with output in tmp. We finally
         * merge back into z1.
         */
        fft.poly_split_fft(srcz1, z1, srcz1, z1 + hn, srct1, t1, logn);
        ffSampling_fft(samp, samp_ctx, srctmp, tmp, srctmp, tmp + hn,
            srctree, tree1, srcz1, z1, srcz1, z1 + hn, logn - 1, srctmp, tmp + n);
        fft.poly_merge_fft(srcz1, z1, srctmp, tmp, srctmp, tmp + hn, logn);

        /*
         * Compute tb0 = t0 + (t1 - z1) * L. Value tb0 ends up in tmp[].
         */
//        memcpy(tmp, t1, n * sizeof *t1);
        System.arraycopy(srct1, t1, srctmp, tmp, n);
        fft.poly_sub(srctmp, tmp, srcz1, z1, logn);
        fft.poly_mul_fft(srctmp, tmp, srctree, tree, logn);
        fft.poly_add(srctmp, tmp, srct0, t0, logn);

        /*
         * Second recursive invocation.
         */
        fft.poly_split_fft(srcz0, z0, srcz0, z0 + hn, srctmp, tmp, logn);
        ffSampling_fft(samp, samp_ctx, srctmp, tmp, srctmp, tmp + hn,
            srctree, tree0, srcz0, z0, srcz0, z0 + hn, logn - 1, srctmp, tmp + n);
        fft.poly_merge_fft(srcz0, z0, srctmp, tmp, srctmp, tmp + hn, logn);
    }

    /*
     * Compute a signature: the signature contains two vectors, s1 and s2.
     * The s1 vector is not returned. The squared norm of (s1,s2) is
     * computed, and if it is short enough, then s2 is returned into the
     * s2[] buffer, and 1 is returned; otherwise, s2[] is untouched and 0 is
     * returned; the caller should then try again. This function uses an
     * expanded key.
     *
     * tmp[] must have room for at least six polynomials.
     */
    int do_sign_tree(SamplerZ samp, SamplerCtx samp_ctx, short[] srcs2, int s2,
                     FalconFPR[] srcexpanded_key, int expanded_key,
                     short[] srchm, int hm,
                     int logn, FalconFPR[] srctmp, int tmp)
    {
        int n, u;
        int t0, t1, tx, ty;
        int b00, b01, b10, b11, tree;
        FalconFPR ni;
        int sqn, ng;
        short[] s1tmp, s2tmp;

        n = MKN(logn);
        t0 = tmp;
        t1 = t0 + n;
        b00 = expanded_key + skoff_b00(logn);
        b01 = expanded_key + skoff_b01(logn);
        b10 = expanded_key + skoff_b10(logn);
        b11 = expanded_key + skoff_b11(logn);
        tree = expanded_key + skoff_tree(logn);

        /*
         * Set the target vector to [hm, 0] (hm is the hashed message).
         */
        for (u = 0; u < n; u++)
        {
            srctmp[t0 + u] = fpr.fpr_of(srchm[hm + u]);
        /* This is implicit.
        t1[u] = fpr_zero;
        */
        }

        /*
         * Apply the lattice basis to obtain the real target
         * vector (after normalization with regards to modulus).
         */
        fft.FFT(srctmp, t0, logn);
        ni = fpr.fpr_inverse_of_q;
//        memcpy(t1, t0, n * sizeof *t0);
        System.arraycopy(srctmp, t0, srctmp, t1, n);
        fft.poly_mul_fft(srctmp, t1, srcexpanded_key, b01, logn);
        fft.poly_mulconst(srctmp, t1, fpr.fpr_neg(ni), logn);
        fft.poly_mul_fft(srctmp, t0, srcexpanded_key, b11, logn);
        fft.poly_mulconst(srctmp, t0, ni, logn);

        tx = t1 + n;
        ty = tx + n;

        /*
         * Apply sampling. Output is written back in [tx, ty].
         */
        ffSampling_fft(samp, samp_ctx, srctmp, tx, srctmp, ty, srcexpanded_key, tree,
            srctmp, t0, srctmp, t1, logn, srctmp, ty + n);

        /*
         * Get the lattice point corresponding to that tiny vector.
         */
//        memcpy(t0, tx, n * sizeof *tx);
        System.arraycopy(srctmp, tx, srctmp, t0, n);
//        memcpy(t1, ty, n * sizeof *ty);
        System.arraycopy(srctmp, ty, srctmp, t1, n);
        fft.poly_mul_fft(srctmp, tx, srcexpanded_key, b00, logn);
        fft.poly_mul_fft(srctmp, ty, srcexpanded_key, b10, logn);
        fft.poly_add(srctmp, tx, srctmp, ty, logn);
//        memcpy(ty, t0, n * sizeof *t0);
        System.arraycopy(srctmp, t0, srctmp, ty, n);
        fft.poly_mul_fft(srctmp, ty, srcexpanded_key, b01, logn);

//        memcpy(t0, tx, n * sizeof *tx);
        System.arraycopy(srctmp, tx, srctmp, t0, n);
        fft.poly_mul_fft(srctmp, t1, srcexpanded_key, b11, logn);
        fft.poly_add(srctmp, t1, srctmp, ty, logn);

        fft.iFFT(srctmp, t0, logn);
        fft.iFFT(srctmp, t1, logn);

        /*
         * Compute the signature.
         */
        s1tmp = new short[n];
        sqn = 0;
        ng = 0;
        for (u = 0; u < n; u++)
        {
            int z;
            // note: hm is unsigned
            z = (srchm[hm + u] & 0xffff) - (int)fpr.fpr_rint(srctmp[t0 + u]);
            sqn += (z * z);
            ng |= sqn;
            s1tmp[u] = (short)z;
        }
        sqn |= -(ng >>> 31);

        /*
         * With "normal" degrees (e.g. 512 or 1024), it is very
         * improbable that the computed vector is not short enough;
         * however, it may happen in practice for the very reduced
         * versions (e.g. degree 16 or below). In that case, the caller
         * will loop, and we must not write anything into s2[] because
         * s2[] may overlap with the hashed message hm[] and we need
         * hm[] for the next iteration.
         */
        s2tmp = new short[n];
        for (u = 0; u < n; u++)
        {
            s2tmp[u] = (short)-fpr.fpr_rint(srctmp[t1 + u]);
        }
        if (common.is_short_half(sqn, s2tmp, 0, logn) != 0)
        {
//            memcpy(s2, s2tmp, n * sizeof *s2);
            System.arraycopy(s2tmp, 0, srcs2, s2, n);
//            memcpy(tmp, s1tmp, n * sizeof *s1tmp);
            System.arraycopy(s1tmp, 0, srctmp, tmp, n);
            return 1;
        }
        return 0;
    }

    /*
     * Compute a signature: the signature contains two vectors, s1 and s2.
     * The s1 vector is not returned. The squared norm of (s1,s2) is
     * computed, and if it is short enough, then s2 is returned into the
     * s2[] buffer, and 1 is returned; otherwise, s2[] is untouched and 0 is
     * returned; the caller should then try again.
     *
     * tmp[] must have room for at least nine polynomials.
     */
    int do_sign_dyn(SamplerZ samp, SamplerCtx samp_ctx, short[] srcs2, int s2,
                    byte[] srcf, int f, byte[] srcg, int g,
                    byte[] srcF, int F, byte[] srcG, int G,
                    short[] srchm, int hm, int logn, FalconFPR[] srctmp, int tmp)
    {
        int n, u;
        int t0, t1, tx, ty;
        int b00, b01, b10, b11, g00, g01, g11;
        FalconFPR ni;
        int sqn, ng;
        short[] s1tmp, s2tmp;

        n = MKN(logn);

        /*
         * Lattice basis is B = [[g, -f], [G, -F]]. We convert it to FFT.
         */
        b00 = tmp;
        b01 = b00 + n;
        b10 = b01 + n;
        b11 = b10 + n;
        smallints_to_fpr(srctmp, b01, srcf, f, logn);
        smallints_to_fpr(srctmp, b00, srcg, g, logn);
        smallints_to_fpr(srctmp, b11, srcF, F, logn);
        smallints_to_fpr(srctmp, b10, srcG, G, logn);
        fft.FFT(srctmp, b01, logn);
        fft.FFT(srctmp, b00, logn);
        fft.FFT(srctmp, b11, logn);
        fft.FFT(srctmp, b10, logn);
        fft.poly_neg(srctmp, b01, logn);
        fft.poly_neg(srctmp, b11, logn);

        /*
         * Compute the Gram matrix G = B·B*. Formulas are:
         *   g00 = b00*adj(b00) + b01*adj(b01)
         *   g01 = b00*adj(b10) + b01*adj(b11)
         *   g10 = b10*adj(b00) + b11*adj(b01)
         *   g11 = b10*adj(b10) + b11*adj(b11)
         *
         * For historical reasons, this implementation uses
         * g00, g01 and g11 (upper triangle). g10 is not kept
         * since it is equal to adj(g01).
         *
         * We _replace_ the matrix B with the Gram matrix, but we
         * must keep b01 and b11 for computing the target vector.
         */
        t0 = b11 + n;
        t1 = t0 + n;

//        memcpy(t0, b01, n * sizeof *b01);
        System.arraycopy(srctmp, b01, srctmp, t0, n);
        fft.poly_mulselfadj_fft(srctmp, t0, logn);    // t0 <- b01*adj(b01)

//        memcpy(t1, b00, n * sizeof *b00);
        System.arraycopy(srctmp, b00, srctmp, t1, n);
        fft.poly_muladj_fft(srctmp, t1, srctmp, b10, logn);   // t1 <- b00*adj(b10)
        fft.poly_mulselfadj_fft(srctmp, b00, logn);   // b00 <- b00*adj(b00)
        fft.poly_add(srctmp, b00, srctmp, t0, logn);      // b00 <- g00
//        memcpy(t0, b01, n * sizeof *b01);
        System.arraycopy(srctmp, b01, srctmp, t0, n);
        fft.poly_muladj_fft(srctmp, b01, srctmp, b11, logn);  // b01 <- b01*adj(b11)
        fft.poly_add(srctmp, b01, srctmp, t1, logn);      // b01 <- g01

        fft.poly_mulselfadj_fft(srctmp, b10, logn);   // b10 <- b10*adj(b10)
//        memcpy(t1, b11, n * sizeof *b11);
        System.arraycopy(srctmp, b11, srctmp, t1, n);
        fft.poly_mulselfadj_fft(srctmp, t1, logn);    // t1 <- b11*adj(b11)
        fft.poly_add(srctmp, b10, srctmp, t1, logn);      // b10 <- g11

        /*
         * We rename variables to make things clearer. The three elements
         * of the Gram matrix uses the first 3*n slots of tmp[], followed
         * by b11 and b01 (in that order).
         */
        g00 = b00;
        g01 = b01;
        g11 = b10;
        b01 = t0;
        t0 = b01 + n;
        t1 = t0 + n;

        /*
         * Memory layout at that point:
         *   g00 g01 g11 b11 b01 t0 t1
         */

        /*
         * Set the target vector to [hm, 0] (hm is the hashed message).
         */
        for (u = 0; u < n; u++)
        {
            srctmp[t0 + u] = fpr.fpr_of(srchm[hm + u]);
        /* This is implicit.
        t1[u] = fpr_zero;
        */
        }

        /*
         * Apply the lattice basis to obtain the real target
         * vector (after normalization with regards to modulus).
         */
        fft.FFT(srctmp, t0, logn);
        ni = fpr.fpr_inverse_of_q;
//        memcpy(t1, t0, n * sizeof *t0);
        System.arraycopy(srctmp, t0, srctmp, t1, n);
        fft.poly_mul_fft(srctmp, t1, srctmp, b01, logn);
        fft.poly_mulconst(srctmp, t1, fpr.fpr_neg(ni), logn);
        fft.poly_mul_fft(srctmp, t0, srctmp, b11, logn);
        fft.poly_mulconst(srctmp, t0, ni, logn);

        /*
         * b01 and b11 can be discarded, so we move back (t0,t1).
         * Memory layout is now:
         *      g00 g01 g11 t0 t1
         */
//        memcpy(b11, t0, n * 2 * sizeof *t0);
        System.arraycopy(srctmp, t0, srctmp, b11, 2 * n);
        t0 = g11 + n;
        t1 = t0 + n;

        /*
         * Apply sampling; result is written over (t0,t1).
         */
        ffSampling_fft_dyntree(samp, samp_ctx,
            srctmp, t0, srctmp, t1,
            srctmp, g00, srctmp, g01, srctmp, g11,
            logn, logn, srctmp, t1 + n);

        /*
         * We arrange the layout back to:
         *     b00 b01 b10 b11 t0 t1
         *
         * We did not conserve the matrix basis, so we must recompute
         * it now.
         */
        b00 = tmp;
        b01 = b00 + n;
        b10 = b01 + n;
        b11 = b10 + n;
//        memmove(b11 + n, t0, n * 2 * sizeof *t0);
        System.arraycopy(srctmp, t0, srctmp, b11 + n, n * 2);
        t0 = b11 + n;
        t1 = t0 + n;
        smallints_to_fpr(srctmp, b01, srcf, f, logn);
        smallints_to_fpr(srctmp, b00, srcg, g, logn);
        smallints_to_fpr(srctmp, b11, srcF, F, logn);
        smallints_to_fpr(srctmp, b10, srcG, G, logn);
        fft.FFT(srctmp, b01, logn);
        fft.FFT(srctmp, b00, logn);
        fft.FFT(srctmp, b11, logn);
        fft.FFT(srctmp, b10, logn);
        fft.poly_neg(srctmp, b01, logn);
        fft.poly_neg(srctmp, b11, logn);
        tx = t1 + n;
        ty = tx + n;

        /*
         * Get the lattice point corresponding to that tiny vector.
         */
//        memcpy(tx, t0, n * sizeof *t0);
        System.arraycopy(srctmp, t0, srctmp, tx, n);
//        memcpy(ty, t1, n * sizeof *t1);
        System.arraycopy(srctmp, t1, srctmp, ty, n);
        fft.poly_mul_fft(srctmp, tx, srctmp, b00, logn);
        fft.poly_mul_fft(srctmp, ty, srctmp, b10, logn);
        fft.poly_add(srctmp, tx, srctmp, ty, logn);
//        memcpy(ty, t0, n * sizeof *t0);
        System.arraycopy(srctmp, t0, srctmp, ty, n);
        fft.poly_mul_fft(srctmp, ty, srctmp, b01, logn);

//        memcpy(t0, tx, n * sizeof *tx);
        System.arraycopy(srctmp, tx, srctmp, t0, n);
        fft.poly_mul_fft(srctmp, t1, srctmp, b11, logn);
        fft.poly_add(srctmp, t1, srctmp, ty, logn);
        fft.iFFT(srctmp, t0, logn);
        fft.iFFT(srctmp, t1, logn);

        s1tmp = new short[n];
        sqn = 0;
        ng = 0;
        for (u = 0; u < n; u++)
        {
            int z;

            z = (srchm[hm + u] & 0xffff) - (int)fpr.fpr_rint(srctmp[t0 + u]);
            sqn += (z * z);
            ng |= sqn;
            s1tmp[u] = (short)z;
        }
        sqn |= -(ng >>> 31);

        /*
         * With "normal" degrees (e.g. 512 or 1024), it is very
         * improbable that the computed vector is not short enough;
         * however, it may happen in practice for the very reduced
         * versions (e.g. degree 16 or below). In that case, the caller
         * will loop, and we must not write anything into s2[] because
         * s2[] may overlap with the hashed message hm[] and we need
         * hm[] for the next iteration.
         */
        s2tmp = new short[n];
        for (u = 0; u < n; u++)
        {
            s2tmp[u] = (short)-fpr.fpr_rint(srctmp[t1 + u]);
        }
        if (common.is_short_half(sqn, s2tmp, 0, logn) != 0)
        {
//        memcpy(s2, s2tmp, n * sizeof *s2);
            System.arraycopy(s2tmp, 0, srcs2, s2, n);
//        memcpy(tmp, s1tmp, n * sizeof *s1tmp);
//            System.arraycopy(s1tmp, 0, srctmp, tmp, n);
            return 1;
        }
        return 0;
    }


    /* see inner.h */
    void sign_tree(short[] srcsig, int sig, SHAKE256 rng,
                   FalconFPR[] srcexpanded_key, int expanded_key,
                   short[] srchm, int hm, int logn, FalconFPR[] srctmp, int tmp)
    {
        int ftmp;

        ftmp = tmp;
        for (; ; )
        {
            /*
             * Signature produces short vectors s1 and s2. The
             * signature is acceptable only if the aggregate vector
             * s1,s2 is short; we must use the same bound as the
             * verifier.
             *
             * If the signature is acceptable, then we return only s2
             * (the verifier recomputes s1 from s2, the hashed message,
             * and the public key).
             */
            SamplerCtx spc = new SamplerCtx();
            SamplerZ samp = new SamplerZ();
            SamplerCtx samp_ctx;

            /*
             * Normal sampling. We use a fast PRNG seeded from our
             * SHAKE context ('rng').
             */
            spc.sigma_min = fpr.fpr_sigma_min[logn];
            spc.p.prng_init(rng);
            samp_ctx = spc;

            /*
             * Do the actual signature.
             */
            if (do_sign_tree(samp, samp_ctx, srcsig, sig,
                srcexpanded_key, expanded_key, srchm, hm, logn, srctmp, ftmp) != 0)
            {
                break;
            }
        }
    }

    /* see inner.h */
    void sign_dyn(short[] srcsig, int sig, SHAKE256 rng,
                  byte[] srcf, int f, byte[] srcg, int g,
                  byte[] srcF, int F, byte[] srcG, int G,
                  short[] srchm, int hm, int logn, FalconFPR[] srctmp, int tmp)
    {
        int ftmp;

        ftmp = tmp;
        for (; ; )
        {
            /*
             * Signature produces short vectors s1 and s2. The
             * signature is acceptable only if the aggregate vector
             * s1,s2 is short; we must use the same bound as the
             * verifier.
             *
             * If the signature is acceptable, then we return only s2
             * (the verifier recomputes s1 from s2, the hashed message,
             * and the public key).
             */
            SamplerCtx spc = new SamplerCtx();
            SamplerZ samp = new SamplerZ();
            SamplerCtx samp_ctx;

            /*
             * Normal sampling. We use a fast PRNG seeded from our
             * SHAKE context ('rng').
             */
            spc.sigma_min = fpr.fpr_sigma_min[logn];
            spc.p.prng_init(rng);
            samp_ctx = spc;

            /*
             * Do the actual signature.
             */
            if (do_sign_dyn(samp, samp_ctx, srcsig, sig,
                srcf, f, srcg, g, srcF, F, srcG, G, srchm, hm, logn, srctmp, ftmp) != 0)
            {
                break;
            }
        }
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy