org.bouncycastle.pqc.crypto.newhope.Poly Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-debug-jdk18on Show documentation
Show all versions of bcprov-ext-debug-jdk18on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.
The newest version!
package org.bouncycastle.pqc.crypto.newhope;
import org.bouncycastle.crypto.digests.SHAKEDigest;
import org.bouncycastle.util.Pack;
class Poly
{
static void add(short[] x, short[] y, short[] z)
{
for (int i = 0; i < Params.N; ++i)
{
z[i] = Reduce.barrett((short)(x[i] + y[i]));
}
}
static void fromBytes(short[] r, byte[] a)
{
for (int i = 0; i < Params.N / 4; ++i)
{
int j = 7 * i;
int a0 = a[j + 0] & 0xFF, a1 = a[j + 1] & 0xFF, a2 = a[j + 2] & 0xFF, a3 = a[j + 3] & 0xFF,
a4 = a[j + 4] & 0xFF, a5 = a[j + 5] & 0xFF, a6 = a[j + 6] & 0xFF;
int k = 4 * i;
r[k + 0] = (short)( a0 | ((a1 & 0x3F) << 8));
r[k + 1] = (short)((a1 >>> 6) | (a2 << 2) | ((a3 & 0x0F) << 10));
r[k + 2] = (short)((a3 >>> 4) | (a4 << 4) | ((a5 & 0x03) << 12));
r[k + 3] = (short)((a5 >>> 2) | (a6 << 6));
}
}
static void fromNTT(short[] r)
{
NTT.bitReverse(r);
NTT.core(r, Precomp.OMEGAS_INV_MONTGOMERY);
NTT.mulCoefficients(r, Precomp.PSIS_INV_MONTGOMERY);
}
static void getNoise(short[] r, byte[] seed, byte nonce)
{
byte[] iv = new byte[8];
iv[0] = nonce;
byte[] buf = new byte[4 * Params.N];
ChaCha20.process(seed, iv, buf, 0, buf.length);
for (int i = 0; i < Params.N; ++i)
{
int t = Pack.bigEndianToInt(buf, i * 4);
//r[i] = (short)(bitCount(t) + Params.Q - Params.K);
int d = 0;
for (int j = 0; j < 8; ++j)
{
d += (t >> j) & 0x01010101;
}
int a = ((d >>> 24) + (d >>> 0)) & 0xFF;
int b = ((d >>> 16) + (d >>> 8)) & 0xFF;
r[i] = (short)(a + Params.Q - b);
}
}
static void pointWise(short[] x, short[] y, short[] z)
{
for (int i = 0; i < Params.N; ++i)
{
int xi = x[i] & 0xFFFF, yi = y[i] & 0xFFFF;
short t = Reduce.montgomery(3186 * yi); // t is now in Montgomery domain
z[i] = Reduce.montgomery(xi * (t & 0xFFFF)); // z[i] is back in normal domain
}
}
static void toBytes(byte[] r, short[] p)
{
for (int i = 0; i < Params.N / 4; ++i)
{
int j = 4 * i;
// Make sure that coefficients are in [0,q]
short t0 = normalize(p[j + 0]);
short t1 = normalize(p[j + 1]);
short t2 = normalize(p[j + 2]);
short t3 = normalize(p[j + 3]);
int k = 7 * i;
r[k + 0] = (byte)t0;
r[k + 1] = (byte)((t0 >> 8) | (t1 << 6));
r[k + 2] = (byte)(t1 >> 2);
r[k + 3] = (byte)((t1 >> 10) | (t2 << 4));
r[k + 4] = (byte)(t2 >> 4);
r[k + 5] = (byte)((t2 >> 12) | (t3 << 2));
r[k + 6] = (byte)(t3 >> 6);
}
}
static void toNTT(short[] r)
{
NTT.mulCoefficients(r, Precomp.PSIS_BITREV_MONTGOMERY);
NTT.core(r, Precomp.OMEGAS_MONTGOMERY);
}
static void uniform(short[] a, byte[] seed)
{
SHAKEDigest xof = new SHAKEDigest(128);
xof.update(seed, 0, seed.length);
int pos = 0;
for (;;)
{
byte[] output = new byte[256];
xof.doOutput(output, 0, output.length);
for (int i = 0; i < output.length; i += 2)
{
int val = (output[i] & 0xFF) | ((output[i + 1] & 0xFF) << 8);
if (val < 5 * Params.Q)
{
a[pos++] = (short)val;
if (pos == Params.N)
{
return;
}
}
}
}
}
// private static int bitCount(int n)
// {
//// return Integer.bitCount(n);
// n = n - ((n >>> 1) & 0x55555555);
// n = (n & 0x33333333) + ((n >>> 2) & 0x33333333);
// return ((n + (n >>> 4) & 0x0F0F0F0F) * 0x01010101) >>> 24;
// }
private static short normalize(short x)
{
int t = Reduce.barrett(x);
int m = t - Params.Q;
int c = m >> 31;
t = m ^ ((t ^ m) & c);
return (short)t;
}
}