All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.pqc.crypto.rainbow.RainbowPublicMap Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.

The newest version!
package org.bouncycastle.pqc.crypto.rainbow;

import java.security.SecureRandom;

import org.bouncycastle.util.Arrays;

class RainbowPublicMap
{
    private ComputeInField cf;
    private RainbowParameters params;
    private final int num_gf_elements = 256;

    public RainbowPublicMap(RainbowParameters params)
    {
        this.cf = new ComputeInField();
        this.params = params;
    }

    private short[][] compute_accumulator(short[] x, short[] y, short[][][] a, int dim)
    {
        short[][] accu = new short[num_gf_elements][dim];
        short[] tmp;

        if (y.length != a[0].length ||
            x.length != a[0][0].length ||
            a.length != dim)
        {
            throw new RuntimeException("Accumulator calculation not possible!");
        }

        for (int i = 0; i < y.length; i++)
        {
            tmp = cf.multVect(y[i], x);
            for (int j = 0; j < x.length; j++)
            {
                for (int k = 0; k < a.length; k++)
                {
                    int index = tmp[j];
                    if (index != 0)
                    {
                        accu[index][k] = GF2Field.addElem(accu[index][k], a[k][i][j]);
                    }
                }
            }
        }

        return accu;
    }

    private short[] add_and_reduce(short[][] accu)
    {
        int m = this.params.getM();
        short[] tmp;
        short[] ret = new short[m];

        for (int b = 0; b < 8; b++)
        {
            int accu_bit = (int)Math.pow(2, b);
            tmp = new short[m];
            for (int i = accu_bit; i < num_gf_elements; i += accu_bit * 2)
            {
                for (int j = 0; j < accu_bit; j++)
                {
                    tmp = cf.addVect(tmp, accu[i + j]);
                }
            }
            ret = cf.addVect(ret, cf.multVect((short)accu_bit, tmp));
        }

        return ret;
    }

    public short[] publicMap(RainbowPublicKeyParameters pk, short[] signature)
    {
        short[][] accu = compute_accumulator(signature, signature, pk.pk, params.getM());
        return add_and_reduce(accu);
    }

    public short[] publicMap_cyclic(RainbowPublicKeyParameters pk, short[] signature)
    {
        int v1 = params.getV1();
        int o1 = params.getO1();
        int o2 = params.getO2();
        short[][][] tmp;
        short[][] accu_l1;
        short[][] accu_l2;
        short[][] accu = new short[num_gf_elements][o1 + o2];

        short[] sig_v1 = Arrays.copyOfRange(signature, 0, v1);
        short[] sig_o1 = Arrays.copyOfRange(signature, v1, v1 + o1);
        short[] sig_o2 = Arrays.copyOfRange(signature, v1 + o1, signature.length);

        SecureRandom pk_random = new RainbowDRBG(pk.pk_seed, pk.getParameters().getHash_algo());

        // layer 1
        tmp = RainbowUtil.generate_random(pk_random, o1, v1, v1, true);    // l1_Q1
        accu_l1 = compute_accumulator(sig_v1, sig_v1, tmp, o1);
        tmp = RainbowUtil.generate_random(pk_random, o1, v1, o1, false);   // l1_Q2
        accu_l1 = cf.addMatrix(accu_l1, compute_accumulator(sig_o1, sig_v1, tmp, o1));
        accu_l1 = cf.addMatrix(accu_l1, compute_accumulator(sig_o2, sig_v1, pk.l1_Q3, o1));
        accu_l1 = cf.addMatrix(accu_l1, compute_accumulator(sig_o1, sig_o1, pk.l1_Q5, o1));
        accu_l1 = cf.addMatrix(accu_l1, compute_accumulator(sig_o2, sig_o1, pk.l1_Q6, o1));
        accu_l1 = cf.addMatrix(accu_l1, compute_accumulator(sig_o2, sig_o2, pk.l1_Q9, o1));

        // layer 2
        tmp = RainbowUtil.generate_random(pk_random, o2, v1, v1, true);    // l2_Q1
        accu_l2 = compute_accumulator(sig_v1, sig_v1, tmp, o2);
        tmp = RainbowUtil.generate_random(pk_random, o2, v1, o1, false);   // l2_Q2
        accu_l2 = cf.addMatrix(accu_l2, compute_accumulator(sig_o1, sig_v1, tmp, o2));
        tmp = RainbowUtil.generate_random(pk_random, o2, v1, o2, false);   // l2_Q3
        accu_l2 = cf.addMatrix(accu_l2, compute_accumulator(sig_o2, sig_v1, tmp, o2));
        tmp = RainbowUtil.generate_random(pk_random, o2, o1, o1, true);    // l2_Q5
        accu_l2 = cf.addMatrix(accu_l2, compute_accumulator(sig_o1, sig_o1, tmp, o2));
        tmp = RainbowUtil.generate_random(pk_random, o2, o1, o2, false);   // l2_Q6
        accu_l2 = cf.addMatrix(accu_l2, compute_accumulator(sig_o2, sig_o1, tmp, o2));
        accu_l2 = cf.addMatrix(accu_l2, compute_accumulator(sig_o2, sig_o2, pk.l2_Q9, o2));

        for (int i = 0; i < num_gf_elements; i++)
        {
            accu[i] = Arrays.concatenate(accu_l1[i], accu_l2[i]);
        }

        return add_and_reduce(accu);
    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy