org.bouncycastle.pqc.legacy.crypto.gmss.GMSSLeaf Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-debug-jdk18on Show documentation
Show all versions of bcprov-ext-debug-jdk18on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.8 and later with debug enabled.
The newest version!
package org.bouncycastle.pqc.legacy.crypto.gmss;
import org.bouncycastle.crypto.Digest;
import org.bouncycastle.pqc.legacy.crypto.gmss.util.GMSSRandom;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.encoders.Hex;
/**
* This class implements the distributed computation of the public key of the
* Winternitz one-time signature scheme (OTSS). The class is used by the GMSS
* classes for calculation of upcoming leafs.
*/
public class GMSSLeaf
{
/**
* The hash function used by the OTS and the PRNG
*/
private Digest messDigestOTS;
/**
* The length of the message digest and private key
*/
private int mdsize, keysize;
/**
* The source of randomness for OTS private key generation
*/
private GMSSRandom gmssRandom;
/**
* Byte array for distributed computation of the upcoming leaf
*/
private byte[] leaf;
/**
* Byte array for storing the concatenated hashes of private key parts
*/
private byte[] concHashs;
/**
* indices for distributed computation
*/
private int i, j;
/**
* storing 2^w
*/
private int two_power_w;
/**
* Winternitz parameter w
*/
private int w;
/**
* the amount of distributed computation steps when updateLeaf is called
*/
private int steps;
/**
* the internal seed
*/
private byte[] seed;
/**
* the OTS privateKey parts
*/
byte[] privateKeyOTS;
/**
* This constructor regenerates a prior GMSSLeaf object
*
* @param digest an array of strings, containing the name of the used hash
* function and PRNG and the name of the corresponding
* provider
* @param otsIndex status bytes
* @param numLeafs status ints
*/
public GMSSLeaf(Digest digest, byte[][] otsIndex, int[] numLeafs)
{
this.i = numLeafs[0];
this.j = numLeafs[1];
this.steps = numLeafs[2];
this.w = numLeafs[3];
messDigestOTS = digest;
gmssRandom = new GMSSRandom(messDigestOTS);
// calulate keysize for private key and the help array
mdsize = messDigestOTS.getDigestSize();
int mdsizeBit = mdsize << 3;
int messagesize = (int)Math.ceil((double)(mdsizeBit) / (double)w);
int checksumsize = getLog((messagesize << w) + 1);
this.keysize = messagesize
+ (int)Math.ceil((double)checksumsize / (double)w);
this.two_power_w = 1 << w;
// calculate steps
// ((2^w)-1)*keysize + keysize + 1 / (2^h -1)
// initialize arrays
this.privateKeyOTS = otsIndex[0];
this.seed = otsIndex[1];
this.concHashs = otsIndex[2];
this.leaf = otsIndex[3];
}
/**
* The constructor precomputes some needed variables for distributed leaf
* calculation
*
* @param digest an array of strings, containing the digest of the used hash
* function and PRNG and the digest of the corresponding
* provider
* @param w the winterniz parameter of that tree the leaf is computed
* for
* @param numLeafs the number of leafs of the tree from where the distributed
* computation is called
*/
GMSSLeaf(Digest digest, int w, int numLeafs)
{
this.w = w;
messDigestOTS = digest;
gmssRandom = new GMSSRandom(messDigestOTS);
// calulate keysize for private key and the help array
mdsize = messDigestOTS.getDigestSize();
int mdsizeBit = mdsize << 3;
int messagesize = (int)Math.ceil((double)(mdsizeBit) / (double)w);
int checksumsize = getLog((messagesize << w) + 1);
this.keysize = messagesize
+ (int)Math.ceil((double)checksumsize / (double)w);
this.two_power_w = 1 << w;
// calculate steps
// ((2^w)-1)*keysize + keysize + 1 / (2^h -1)
this.steps = (int)Math
.ceil((double)(((1 << w) - 1) * keysize + 1 + keysize)
/ (double)(numLeafs));
// initialize arrays
this.seed = new byte[mdsize];
this.leaf = new byte[mdsize];
this.privateKeyOTS = new byte[mdsize];
this.concHashs = new byte[mdsize * keysize];
}
public GMSSLeaf(Digest digest, int w, int numLeafs, byte[] seed0)
{
this.w = w;
messDigestOTS = digest;
gmssRandom = new GMSSRandom(messDigestOTS);
// calulate keysize for private key and the help array
mdsize = messDigestOTS.getDigestSize();
int mdsizeBit = mdsize << 3;
int messagesize = (int)Math.ceil((double)(mdsizeBit) / (double)w);
int checksumsize = getLog((messagesize << w) + 1);
this.keysize = messagesize
+ (int)Math.ceil((double)checksumsize / (double)w);
this.two_power_w = 1 << w;
// calculate steps
// ((2^w)-1)*keysize + keysize + 1 / (2^h -1)
this.steps = (int)Math
.ceil((double)(((1 << w) - 1) * keysize + 1 + keysize)
/ (double)(numLeafs));
// initialize arrays
this.seed = new byte[mdsize];
this.leaf = new byte[mdsize];
this.privateKeyOTS = new byte[mdsize];
this.concHashs = new byte[mdsize * keysize];
initLeafCalc(seed0);
}
private GMSSLeaf(GMSSLeaf original)
{
this.messDigestOTS = original.messDigestOTS;
this.mdsize = original.mdsize;
this.keysize = original.keysize;
this.gmssRandom = original.gmssRandom;
this.leaf = Arrays.clone(original.leaf);
this.concHashs = Arrays.clone(original.concHashs);
this.i = original.i;
this.j = original.j;
this.two_power_w = original.two_power_w;
this.w = original.w;
this.steps = original.steps;
this.seed = Arrays.clone(original.seed);
this.privateKeyOTS = Arrays.clone(original.privateKeyOTS);
}
/**
* initialize the distributed leaf calculation reset i,j and compute OTSseed
* with seed0
*
* @param seed0 the starting seed
*/
// TODO: this really looks like it should be either always called from a constructor or nextLeaf.
void initLeafCalc(byte[] seed0)
{
this.i = 0;
this.j = 0;
byte[] dummy = new byte[mdsize];
System.arraycopy(seed0, 0, dummy, 0, seed.length);
this.seed = gmssRandom.nextSeed(dummy);
}
GMSSLeaf nextLeaf()
{
GMSSLeaf nextLeaf = new GMSSLeaf(this);
nextLeaf.updateLeafCalc();
return nextLeaf;
}
/**
* Processes steps
steps of distributed leaf calculation
*
* @return true if leaf is completed, else false
*/
private void updateLeafCalc()
{
byte[] buf = new byte[messDigestOTS.getDigestSize()];
// steps times do
// TODO: this really needs to be looked at, the 10000 has been added as
// prior to this the leaf value always ended up as zeros.
for (int s = 0; s < steps + 10000; s++)
{
if (i == keysize && j == two_power_w - 1)
{ // [3] at last hash the
// concatenation
messDigestOTS.update(concHashs, 0, concHashs.length);
leaf = new byte[messDigestOTS.getDigestSize()];
messDigestOTS.doFinal(leaf, 0);
return;
}
else if (i == 0 || j == two_power_w - 1)
{ // [1] at the
// beginning and
// when [2] is
// finished: get the
// next private key
// part
i++;
j = 0;
// get next privKey part
this.privateKeyOTS = gmssRandom.nextSeed(seed);
}
else
{ // [2] hash the privKey part
messDigestOTS.update(privateKeyOTS, 0, privateKeyOTS.length);
privateKeyOTS = buf;
messDigestOTS.doFinal(privateKeyOTS, 0);
j++;
if (j == two_power_w - 1)
{ // after w hashes add to the
// concatenated array
System.arraycopy(privateKeyOTS, 0, concHashs, mdsize
* (i - 1), mdsize);
}
}
}
throw new IllegalStateException("unable to updateLeaf in steps: " + steps + " " + i + " " + j);
}
/**
* Returns the leaf value.
*
* @return the leaf value
*/
public byte[] getLeaf()
{
return Arrays.clone(leaf);
}
/**
* This method returns the least integer that is greater or equal to the
* logarithm to the base 2 of an integer intValue
.
*
* @param intValue an integer
* @return The least integer greater or equal to the logarithm to the base 2
* of intValue
*/
private int getLog(int intValue)
{
int log = 1;
int i = 2;
while (i < intValue)
{
i <<= 1;
log++;
}
return log;
}
/**
* Returns the status byte array used by the GMSSPrivateKeyASN.1 class
*
* @return The status bytes
*/
public byte[][] getStatByte()
{
byte[][] statByte = new byte[4][];
statByte[0] = privateKeyOTS;
statByte[1] = seed;
statByte[2] = concHashs;
statByte[3] = leaf;
return statByte;
}
/**
* Returns the status int array used by the GMSSPrivateKeyASN.1 class
*
* @return The status ints
*/
public int[] getStatInt()
{
int[] statInt = new int[4];
statInt[0] = i;
statInt[1] = j;
statInt[2] = steps;
statInt[3] = w;
return statInt;
}
/**
* Returns a String representation of the main part of this element
*
* @return a String representation of the main part of this element
*/
public String toString()
{
String out = "";
for (int i = 0; i < 4; i++)
{
out = out + this.getStatInt()[i] + " ";
}
out = out + " " + this.mdsize + " " + this.keysize + " "
+ this.two_power_w + " ";
byte[][] temp = this.getStatByte();
for (int i = 0; i < 4; i++)
{
if (temp[i] != null)
{
out = out + new String(Hex.encode(temp[i])) + " ";
}
else
{
out = out + "null ";
}
}
return out;
}
}