All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.generators.RSAKeyPairGenerator Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4. Note: this package includes the NTRU encryption algorithms.

There is a newer version: 1.78.1
Show newest version
package org.bouncycastle.crypto.generators;

import java.math.BigInteger;

import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
import org.bouncycastle.crypto.AsymmetricCipherKeyPairGenerator;
import org.bouncycastle.crypto.KeyGenerationParameters;
import org.bouncycastle.crypto.params.RSAKeyGenerationParameters;
import org.bouncycastle.crypto.params.RSAKeyParameters;
import org.bouncycastle.crypto.params.RSAPrivateCrtKeyParameters;
import org.bouncycastle.math.ec.WNafUtil;

/**
 * an RSA key pair generator.
 */
public class RSAKeyPairGenerator
    implements AsymmetricCipherKeyPairGenerator
{
    private static final BigInteger ONE = BigInteger.valueOf(1);

    private RSAKeyGenerationParameters param;

    public void init(KeyGenerationParameters param)
    {
        this.param = (RSAKeyGenerationParameters)param;
    }

    public AsymmetricCipherKeyPair generateKeyPair()
    {
        AsymmetricCipherKeyPair result = null;
        boolean done = false;

        //
        // p and q values should have a length of half the strength in bits
        //
        int strength = param.getStrength();
        int pbitlength = (strength + 1) / 2;
        int qbitlength = strength - pbitlength;
        int mindiffbits = strength / 3;
        int minWeight = strength >> 2;

        // d lower bound is 2^(strength / 2)
        BigInteger dLowerBound = BigInteger.valueOf(2).pow(strength / 2);

        while (!done)
        {
            BigInteger p, q, n, d, e, pSub1, qSub1, gcd, lcm;

            e = param.getPublicExponent();

            // TODO Consider generating safe primes for p, q (see DHParametersHelper.generateSafePrimes)
            // (then p-1 and q-1 will not consist of only small factors - see "Pollard's algorithm")

            p = chooseRandomPrime(pbitlength, e);

            //
            // generate a modulus of the required length
            //
            for (; ; )
            {
                q = chooseRandomPrime(qbitlength, e);

                // p and q should not be too close together (or equal!)
                BigInteger diff = q.subtract(p).abs();
                if (diff.bitLength() < mindiffbits)
                {
                    continue;
                }

                //
                // calculate the modulus
                //
                n = p.multiply(q);

                if (n.bitLength() != strength)
                {
                    //
                    // if we get here our primes aren't big enough, make the largest
                    // of the two p and try again
                    //
                    p = p.max(q);
                    continue;
                }

	            /*
                 * Require a minimum weight of the NAF representation, since low-weight composites may
	             * be weak against a version of the number-field-sieve for factoring.
	             *
	             * See "The number field sieve for integers of low weight", Oliver Schirokauer.
	             */
                if (WNafUtil.getNafWeight(n) < minWeight)
                {
                    p = chooseRandomPrime(pbitlength, e);
                    continue;
                }

                break;
            }

            if (p.compareTo(q) < 0)
            {
                gcd = p;
                p = q;
                q = gcd;
            }

            pSub1 = p.subtract(ONE);
            qSub1 = q.subtract(ONE);
            gcd = pSub1.gcd(qSub1);
            lcm = pSub1.divide(gcd).multiply(qSub1);

            //
            // calculate the private exponent
            //
            d = e.modInverse(lcm);

            if (d.compareTo(dLowerBound) <= 0)
            {
                continue;
            }
            else
            {
                done = true;
            }

            //
            // calculate the CRT factors
            //
            BigInteger dP, dQ, qInv;

            dP = d.remainder(pSub1);
            dQ = d.remainder(qSub1);
            qInv = q.modInverse(p);

            result = new AsymmetricCipherKeyPair(
                new RSAKeyParameters(false, n, e),
                new RSAPrivateCrtKeyParameters(n, e, d, p, q, dP, dQ, qInv));
        }

        return result;
    }

    /**
     * Choose a random prime value for use with RSA
     * 
     * @param bitlength the bit-length of the returned prime
     * @param e the RSA public exponent
     * @return a prime p, with (p-1) relatively prime to e
     */
    protected BigInteger chooseRandomPrime(int bitlength, BigInteger e)
    {
        for (;;)
        {
            BigInteger p = new BigInteger(bitlength, 1, param.getRandom());
            
            if (p.mod(e).equals(ONE))
            {
                continue;
            }
            
            if (!p.isProbablePrime(param.getCertainty()))
            {
                continue;
            }

            if (!e.gcd(p.subtract(ONE)).equals(ONE)) 
            {
                continue;
            }
            
            return p;
        }
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy