org.bouncycastle.crypto.macs.ISO9797Alg3Mac Maven / Gradle / Ivy
Show all versions of bcprov-ext-jdk14 Show documentation
package org.bouncycastle.crypto.macs;
import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.Mac;
import org.bouncycastle.crypto.engines.DESEngine;
import org.bouncycastle.crypto.modes.CBCBlockCipher;
import org.bouncycastle.crypto.paddings.BlockCipherPadding;
import org.bouncycastle.crypto.params.KeyParameter;
import org.bouncycastle.crypto.params.ParametersWithIV;
/**
* DES based CBC Block Cipher MAC according to ISO9797, algorithm 3 (ANSI X9.19 Retail MAC)
*
* This could as well be derived from CBCBlockCipherMac, but then the property mac in the base
* class must be changed to protected
*/
public class ISO9797Alg3Mac
implements Mac
{
private byte[] mac;
private byte[] buf;
private int bufOff;
private BlockCipher cipher;
private BlockCipherPadding padding;
private int macSize;
private KeyParameter lastKey2;
private KeyParameter lastKey3;
/**
* create a Retail-MAC based on a CBC block cipher. This will produce an
* authentication code of the length of the block size of the cipher.
*
* @param cipher the cipher to be used as the basis of the MAC generation. This must
* be DESEngine.
*/
public ISO9797Alg3Mac(
BlockCipher cipher)
{
this(cipher, cipher.getBlockSize() * 8, null);
}
/**
* create a Retail-MAC based on a CBC block cipher. This will produce an
* authentication code of the length of the block size of the cipher.
*
* @param cipher the cipher to be used as the basis of the MAC generation.
* @param padding the padding to be used to complete the last block.
*/
public ISO9797Alg3Mac(
BlockCipher cipher,
BlockCipherPadding padding)
{
this(cipher, cipher.getBlockSize() * 8, padding);
}
/**
* create a Retail-MAC based on a block cipher with the size of the
* MAC been given in bits. This class uses single DES CBC mode as the basis for the
* MAC generation.
*
* Note: the size of the MAC must be at least 24 bits (FIPS Publication 81),
* or 16 bits if being used as a data authenticator (FIPS Publication 113),
* and in general should be less than the size of the block cipher as it reduces
* the chance of an exhaustive attack (see Handbook of Applied Cryptography).
*
* @param cipher the cipher to be used as the basis of the MAC generation.
* @param macSizeInBits the size of the MAC in bits, must be a multiple of 8.
*/
public ISO9797Alg3Mac(
BlockCipher cipher,
int macSizeInBits)
{
this(cipher, macSizeInBits, null);
}
/**
* create a standard MAC based on a block cipher with the size of the
* MAC been given in bits. This class uses single DES CBC mode as the basis for the
* MAC generation. The final block is decrypted and then encrypted using the
* middle and right part of the key.
*
* Note: the size of the MAC must be at least 24 bits (FIPS Publication 81),
* or 16 bits if being used as a data authenticator (FIPS Publication 113),
* and in general should be less than the size of the block cipher as it reduces
* the chance of an exhaustive attack (see Handbook of Applied Cryptography).
*
* @param cipher the cipher to be used as the basis of the MAC generation.
* @param macSizeInBits the size of the MAC in bits, must be a multiple of 8.
* @param padding the padding to be used to complete the last block.
*/
public ISO9797Alg3Mac(
BlockCipher cipher,
int macSizeInBits,
BlockCipherPadding padding)
{
if ((macSizeInBits % 8) != 0)
{
throw new IllegalArgumentException("MAC size must be multiple of 8");
}
if (!(cipher instanceof DESEngine))
{
throw new IllegalArgumentException("cipher must be instance of DESEngine");
}
this.cipher = new CBCBlockCipher(cipher);
this.padding = padding;
this.macSize = macSizeInBits / 8;
mac = new byte[cipher.getBlockSize()];
buf = new byte[cipher.getBlockSize()];
bufOff = 0;
}
public String getAlgorithmName()
{
return "ISO9797Alg3";
}
public void init(CipherParameters params)
{
reset();
if (!(params instanceof KeyParameter || params instanceof ParametersWithIV))
{
throw new IllegalArgumentException(
"params must be an instance of KeyParameter or ParametersWithIV");
}
// KeyParameter must contain a double or triple length DES key,
// however the underlying cipher is a single DES. The middle and
// right key are used only in the final step.
KeyParameter kp;
if (params instanceof KeyParameter)
{
kp = (KeyParameter)params;
}
else
{
kp = (KeyParameter)((ParametersWithIV)params).getParameters();
}
KeyParameter key1;
byte[] keyvalue = kp.getKey();
if (keyvalue.length == 16)
{ // Double length DES key
key1 = new KeyParameter(keyvalue, 0, 8);
this.lastKey2 = new KeyParameter(keyvalue, 8, 8);
this.lastKey3 = key1;
}
else if (keyvalue.length == 24)
{ // Triple length DES key
key1 = new KeyParameter(keyvalue, 0, 8);
this.lastKey2 = new KeyParameter(keyvalue, 8, 8);
this.lastKey3 = new KeyParameter(keyvalue, 16, 8);
}
else
{
throw new IllegalArgumentException(
"Key must be either 112 or 168 bit long");
}
if (params instanceof ParametersWithIV)
{
cipher.init(true, new ParametersWithIV(key1, ((ParametersWithIV)params).getIV()));
}
else
{
cipher.init(true, key1);
}
}
public int getMacSize()
{
return macSize;
}
public void update(
byte in)
{
if (bufOff == buf.length)
{
cipher.processBlock(buf, 0, mac, 0);
bufOff = 0;
}
buf[bufOff++] = in;
}
public void update(
byte[] in,
int inOff,
int len)
{
if (len < 0)
{
throw new IllegalArgumentException("Can't have a negative input length!");
}
int blockSize = cipher.getBlockSize();
int resultLen = 0;
int gapLen = blockSize - bufOff;
if (len > gapLen)
{
System.arraycopy(in, inOff, buf, bufOff, gapLen);
resultLen += cipher.processBlock(buf, 0, mac, 0);
bufOff = 0;
len -= gapLen;
inOff += gapLen;
while (len > blockSize)
{
resultLen += cipher.processBlock(in, inOff, mac, 0);
len -= blockSize;
inOff += blockSize;
}
}
System.arraycopy(in, inOff, buf, bufOff, len);
bufOff += len;
}
public int doFinal(
byte[] out,
int outOff)
{
int blockSize = cipher.getBlockSize();
if (padding == null)
{
//
// pad with zeroes
//
while (bufOff < blockSize)
{
buf[bufOff] = 0;
bufOff++;
}
}
else
{
if (bufOff == blockSize)
{
cipher.processBlock(buf, 0, mac, 0);
bufOff = 0;
}
padding.addPadding(buf, bufOff);
}
cipher.processBlock(buf, 0, mac, 0);
// Added to code from base class
DESEngine deseng = new DESEngine();
deseng.init(false, this.lastKey2);
deseng.processBlock(mac, 0, mac, 0);
deseng.init(true, this.lastKey3);
deseng.processBlock(mac, 0, mac, 0);
// ****
System.arraycopy(mac, 0, out, outOff, macSize);
reset();
return macSize;
}
/**
* Reset the mac generator.
*/
public void reset()
{
/*
* clean the buffer.
*/
for (int i = 0; i < buf.length; i++)
{
buf[i] = 0;
}
bufOff = 0;
/*
* reset the underlying cipher.
*/
cipher.reset();
}
}