All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.math.ec.custom.djb.Curve25519Field Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4. Note: this package includes the NTRU encryption algorithms.

There is a newer version: 1.78.1
Show newest version
package org.bouncycastle.math.ec.custom.djb;

import java.math.BigInteger;

import org.bouncycastle.math.raw.Nat;
import org.bouncycastle.math.raw.Nat256;

public class Curve25519Field
{
    private static final long M = 0xFFFFFFFFL;

    // 2^255 - 2^4 - 2^1 - 1
    static final int[] P = new int[]{ 0xFFFFFFED, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
        0xFFFFFFFF, 0x7FFFFFFF };
    private static final int P7 = 0x7FFFFFFF;
    private static final int[] PExt = new int[]{ 0x00000169, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
        0x00000000, 0x00000000, 0x00000000, 0xFFFFFFED, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
        0xFFFFFFFF, 0x3FFFFFFF };
    private static final int PInv = 0x13;

    public static void add(int[] x, int[] y, int[] z)
    {
        Nat256.add(x, y, z);
        if (Nat256.gte(z, P))
        {
            subPFrom(z);
        }
    }

    public static void addExt(int[] xx, int[] yy, int[] zz)
    {
        Nat.add(16, xx, yy, zz);
        if (Nat.gte(16, zz, PExt))
        {
            subPExtFrom(zz);
        }
    }

    public static void addOne(int[] x, int[] z)
    {
        Nat.inc(8, x, z);
        if (Nat256.gte(z, P))
        {
            subPFrom(z);
        }
    }

    public static int[] fromBigInteger(BigInteger x)
    {
        int[] z = Nat256.fromBigInteger(x);
        while (Nat256.gte(z, P))
        {
            Nat256.subFrom(P, z);
        }
        return z;
    }

    public static void half(int[] x, int[] z)
    {
        if ((x[0] & 1) == 0)
        {
            Nat.shiftDownBit(8, x, 0, z);
        }
        else
        {
            Nat256.add(x, P, z);
            Nat.shiftDownBit(8, z, 0);
        }
    }

    public static void multiply(int[] x, int[] y, int[] z)
    {
        int[] tt = Nat256.createExt();
        Nat256.mul(x, y, tt);
        reduce(tt, z);
    }

    public static void multiplyAddToExt(int[] x, int[] y, int[] zz)
    {
        Nat256.mulAddTo(x, y, zz);
        if (Nat.gte(16, zz, PExt))
        {
            subPExtFrom(zz);
        }
    }

    public static void negate(int[] x, int[] z)
    {
        if (Nat256.isZero(x))
        {
            Nat256.zero(z);
        }
        else
        {
            Nat256.sub(P, x, z);
        }
    }

    public static void reduce(int[] xx, int[] z)
    {
//        assert xx[15] >>> 30 == 0;

        int xx07 = xx[7];
        Nat.shiftUpBit(8, xx, 8, xx07, z, 0);
        int c = Nat256.mulByWordAddTo(PInv, xx, z) << 1;
        int z7 = z[7];
        c += (z7 >>> 31) - (xx07 >>> 31);
        z7 &= P7;
        z7 += Nat.addWordTo(7, c * PInv, z);
        z[7] = z7;
        if (Nat256.gte(z, P))
        {
            subPFrom(z);
        }
    }

    public static void reduce27(int x, int[] z)
    {
//        assert x >>> 26 == 0;

        int z7 = z[7];
        int c = (x << 1 | z7 >>> 31);
        z7 &= P7;
        z7 += Nat.addWordTo(7, c * PInv, z);
        z[7] = z7;
        if (Nat256.gte(z, P))
        {
            subPFrom(z);
        }
    }

    public static void square(int[] x, int[] z)
    {
        int[] tt = Nat256.createExt();
        Nat256.square(x, tt);
        reduce(tt, z);
    }

    public static void squareN(int[] x, int n, int[] z)
    {
//        assert n > 0;

        int[] tt = Nat256.createExt();
        Nat256.square(x, tt);
        reduce(tt, z);

        while (--n > 0)
        {
            Nat256.square(z, tt);
            reduce(tt, z);
        }
    }

    public static void subtract(int[] x, int[] y, int[] z)
    {
        int c = Nat256.sub(x, y, z);
        if (c != 0)
        {
            addPTo(z);
        }
    }

    public static void subtractExt(int[] xx, int[] yy, int[] zz)
    {
        int c = Nat.sub(16, xx, yy, zz);
        if (c != 0)
        {
            addPExtTo(zz);
        }
    }

    public static void twice(int[] x, int[] z)
    {
        Nat.shiftUpBit(8, x, 0, z);
        if (Nat256.gte(z, P))
        {
            subPFrom(z);
        }
    }

    private static int addPTo(int[] z)
    {
        long c = (z[0] & M) - PInv;
        z[0] = (int)c;
        c >>= 32;
        if (c != 0)
        {
            c = Nat.decAt(7, z, 1);
        }
        c += (z[7] & M) + ((P7 + 1) & M);
        z[7] = (int)c;
        c >>= 32;
        return (int)c;
    }

    private static int addPExtTo(int[] zz)
    {
        long c = (zz[0] & M) + (PExt[0] & M);
        zz[0] = (int)c;
        c >>= 32;
        if (c != 0)
        {
            c = Nat.incAt(8, zz, 1);
        }
        c += (zz[8] & M) - PInv;
        zz[8] = (int)c;
        c >>= 32;
        if (c != 0)
        {
            c = Nat.decAt(15, zz, 9);
        }
        c += (zz[15] & M) + ((PExt[15] + 1) & M);
        zz[15] = (int)c;
        c >>= 32;
        return (int)c;
    }

    private static int subPFrom(int[] z)
    {
        long c = (z[0] & M) + PInv;
        z[0] = (int)c;
        c >>= 32;
        if (c != 0)
        {
            c = Nat.incAt(7, z, 1);
        }
        c += (z[7] & M) - ((P7 + 1) & M);
        z[7] = (int)c;
        c >>= 32;
        return (int)c;
    }

    private static int subPExtFrom(int[] zz)
    {
        long c = (zz[0] & M) - (PExt[0] & M);
        zz[0] = (int)c;
        c >>= 32;
        if (c != 0)
        {
            c = Nat.decAt(8, zz, 1);
        }
        c += (zz[8] & M) + PInv;
        zz[8] = (int)c;
        c >>= 32;
        if (c != 0)
        {
            c = Nat.incAt(15, zz, 9);
        }
        c += (zz[15] & M) - ((PExt[15] + 1) & M);
        zz[15] = (int)c;
        c >>= 32;
        return (int)c;
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy