org.bouncycastle.crypto.digests.Blake2bDigest Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-jdk14 Show documentation
Show all versions of bcprov-ext-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4. Note: this package includes the NTRU encryption algorithms.
package org.bouncycastle.crypto.digests;
/* The BLAKE2 cryptographic hash function was designed by Jean-
Philippe Aumasson, Samuel Neves, Zooko Wilcox-O'Hearn, and Christian
Winnerlein.
Reference Implementation and Description can be found at: https://blake2.net/
Internet Draft: https://tools.ietf.org/html/draft-saarinen-blake2-02
This implementation does not support the Tree Hashing Mode.
For unkeyed hashing, developers adapting BLAKE2 to ASN.1 - based
message formats SHOULD use the OID tree at x = 1.3.6.1.4.1.1722.12.2.
Algorithm | Target | Collision | Hash | Hash ASN.1 |
Identifier | Arch | Security | nn | OID Suffix |
---------------+--------+-----------+------+------------+
id-blake2b160 | 64-bit | 2**80 | 20 | x.1.20 |
id-blake2b256 | 64-bit | 2**128 | 32 | x.1.32 |
id-blake2b384 | 64-bit | 2**192 | 48 | x.1.48 |
id-blake2b512 | 64-bit | 2**256 | 64 | x.1.64 |
---------------+--------+-----------+------+------------+
*/
import org.bouncycastle.crypto.ExtendedDigest;
import org.bouncycastle.util.Arrays;
/**
* Implementation of the cryptographic hash function Blakbe2b.
*
* Blake2b offers a built-in keying mechanism to be used directly
* for authentication ("Prefix-MAC") rather than a HMAC construction.
*
* Blake2b offers a built-in support for a salt for randomized hashing
* and a personal string for defining a unique hash function for each application.
*
* BLAKE2b is optimized for 64-bit platforms and produces digests of any size
* between 1 and 64 bytes.
*/
public class Blake2bDigest
implements ExtendedDigest
{
// Blake2b Initialization Vector:
private final static long blake2b_IV[] =
// Produced from the square root of primes 2, 3, 5, 7, 11, 13, 17, 19.
// The same as SHA-512 IV.
{
0x6a09e667f3bcc908L, 0xbb67ae8584caa73bL, 0x3c6ef372fe94f82bL,
0xa54ff53a5f1d36f1L, 0x510e527fade682d1L, 0x9b05688c2b3e6c1fL,
0x1f83d9abfb41bd6bL, 0x5be0cd19137e2179L
};
// Message word permutations:
private final static byte[][] blake2b_sigma =
{
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
};
private static int rOUNDS = 12; // to use for Catenas H'
private final static int BLOCK_LENGTH_BYTES = 128;// bytes
// General parameters:
private int digestLength = 64; // 1- 64 bytes
private int keyLength = 0; // 0 - 64 bytes for keyed hashing for MAC
private byte[] salt = null;// new byte[16];
private byte[] personalization = null;// new byte[16];
// the key
private byte[] key = null;
// Tree hashing parameters:
// Because this class does not implement the Tree Hashing Mode,
// these parameters can be treated as constants (see init() function)
/*
* private int fanout = 1; // 0-255 private int depth = 1; // 1 - 255
* private int leafLength= 0; private long nodeOffset = 0L; private int
* nodeDepth = 0; private int innerHashLength = 0;
*/
// whenever this buffer overflows, it will be processed
// in the compress() function.
// For performance issues, long messages will not use this buffer.
private byte[] buffer = null;// new byte[BLOCK_LENGTH_BYTES];
// Position of last inserted byte:
private int bufferPos = 0;// a value from 0 up to 128
private long[] internalState = new long[16]; // In the Blake2b paper it is
// called: v
private long[] chainValue = null; // state vector, in the Blake2b paper it
// is called: h
private long t0 = 0L; // holds last significant bits, counter (counts bytes)
private long t1 = 0L; // counter: Length up to 2^128 are supported
private long f0 = 0L; // finalization flag, for last block: ~0L
// For Tree Hashing Mode, not used here:
// private long f1 = 0L; // finalization flag, for last node: ~0L
public Blake2bDigest()
{
this(512);
}
public Blake2bDigest(Blake2bDigest digest)
{
this.bufferPos = digest.bufferPos;
this.buffer = Arrays.clone(digest.buffer);
this.keyLength = digest.keyLength;
this.key = Arrays.clone(digest.key);
this.digestLength = digest.digestLength;
this.chainValue = Arrays.clone(digest.chainValue);
this.personalization = Arrays.clone(personalization);
}
public Blake2bDigest(int digestLength)
{
if (digestLength != 160 && digestLength != 256 && digestLength != 384 && digestLength != 512)
{
throw new IllegalArgumentException("Blake2b digest restricted to one of [160, 256, 384, 512]");
}
buffer = new byte[BLOCK_LENGTH_BYTES];
keyLength = 0;
this.digestLength = digestLength / 8;
init();
}
/**
* Blake2b for authentication ("Prefix-MAC mode").
* After calling the doFinal() method, the key will
* remain to be used for further computations of
* this instance.
* The key can be overwritten using the clearKey() method.
*
* @param key A key up to 64 bytes or null
*/
public Blake2bDigest(byte[] key)
{
buffer = new byte[BLOCK_LENGTH_BYTES];
if (key != null)
{
this.key = new byte[key.length];
System.arraycopy(key, 0, this.key, 0, key.length);
if (key.length > 64)
{
throw new IllegalArgumentException(
"Keys > 64 are not supported");
}
keyLength = key.length;
System.arraycopy(key, 0, buffer, 0, key.length);
bufferPos = BLOCK_LENGTH_BYTES; // zero padding
}
digestLength = 64;
init();
}
/**
* Blake2b with key, required digest length, salt and personalization.
* After calling the doFinal() method, the key, the salt and the personal string
* will remain and might be used for further computations with this instance.
* The key can be overwritten using the clearKey() method, the salt (pepper)
* can be overwritten using the clearSalt() method.
*
* @param key A key up to 64 bytes or null
* @param digestLength from 1 up to 64 bytes
* @param salt up to 16 bytes or null
* @param personalization up to 16 bytes or null
*/
public Blake2bDigest(byte[] key, int digestLength, byte[] salt,
byte[] personalization)
{
buffer = new byte[BLOCK_LENGTH_BYTES];
if (digestLength < 1 || digestLength > 64)
{
throw new IllegalArgumentException(
"Invalid digest length (required: 1 - 64)");
}
this.digestLength = digestLength;
if (salt != null)
{
if (salt.length != 16)
{
throw new IllegalArgumentException(
"salt length must be exactly 16 bytes");
}
this.salt = new byte[16];
System.arraycopy(salt, 0, this.salt, 0, salt.length);
}
if (personalization != null)
{
if (personalization.length != 16)
{
throw new IllegalArgumentException(
"personalization length must be exactly 16 bytes");
}
this.personalization = new byte[16];
System.arraycopy(personalization, 0, this.personalization, 0,
personalization.length);
}
if (key != null)
{
this.key = new byte[key.length];
System.arraycopy(key, 0, this.key, 0, key.length);
if (key.length > 64)
{
throw new IllegalArgumentException(
"Keys > 64 are not supported");
}
keyLength = key.length;
System.arraycopy(key, 0, buffer, 0, key.length);
bufferPos = BLOCK_LENGTH_BYTES; // zero padding
}
init();
}
// initialize chainValue
private void init()
{
if (chainValue == null)
{
chainValue = new long[8];
chainValue[0] = blake2b_IV[0]
^ (digestLength | (keyLength << 8) | 0x1010000);
// 0x1010000 = ((fanout << 16) | (depth << 24) | (leafLength <<
// 32));
// with fanout = 1; depth = 0; leafLength = 0;
chainValue[1] = blake2b_IV[1];// ^ nodeOffset; with nodeOffset = 0;
chainValue[2] = blake2b_IV[2];// ^ ( nodeDepth | (innerHashLength <<
// 8) );
// with nodeDepth = 0; innerHashLength = 0;
chainValue[3] = blake2b_IV[3];
chainValue[4] = blake2b_IV[4];
chainValue[5] = blake2b_IV[5];
if (salt != null)
{
chainValue[4] ^= (bytes2long(salt, 0));
chainValue[5] ^= (bytes2long(salt, 8));
}
chainValue[6] = blake2b_IV[6];
chainValue[7] = blake2b_IV[7];
if (personalization != null)
{
chainValue[6] ^= (bytes2long(personalization, 0));
chainValue[7] ^= (bytes2long(personalization, 8));
}
}
}
private void initializeInternalState()
{
// initialize v:
System.arraycopy(chainValue, 0, internalState, 0, chainValue.length);
System.arraycopy(blake2b_IV, 0, internalState, chainValue.length, 4);
internalState[12] = t0 ^ blake2b_IV[4];
internalState[13] = t1 ^ blake2b_IV[5];
internalState[14] = f0 ^ blake2b_IV[6];
internalState[15] = blake2b_IV[7];// ^ f1 with f1 = 0
}
/**
* update the message digest with a single byte.
*
* @param b the input byte to be entered.
*/
public void update(byte b)
{
int remainingLength = 0; // left bytes of buffer
// process the buffer if full else add to buffer:
remainingLength = BLOCK_LENGTH_BYTES - bufferPos;
if (remainingLength == 0)
{ // full buffer
t0 += BLOCK_LENGTH_BYTES;
if (t0 == 0)
{ // if message > 2^64
t1++;
}
compress(buffer, 0);
Arrays.fill(buffer, (byte)0);// clear buffer
buffer[0] = b;
bufferPos = 1;
} else
{
buffer[bufferPos] = b;
bufferPos++;
return;
}
}
/**
* update the message digest with a block of bytes.
*
* @param message the byte array containing the data.
* @param offset the offset into the byte array where the data starts.
* @param len the length of the data.
*/
public void update(byte[] message, int offset, int len)
{
if (message == null || len == 0)
return;
int remainingLength = 0; // left bytes of buffer
if (bufferPos != 0)
{ // commenced, incomplete buffer
// complete the buffer:
remainingLength = BLOCK_LENGTH_BYTES - bufferPos;
if (remainingLength < len)
{ // full buffer + at least 1 byte
System.arraycopy(message, offset, buffer, bufferPos,
remainingLength);
t0 += BLOCK_LENGTH_BYTES;
if (t0 == 0)
{ // if message > 2^64
t1++;
}
compress(buffer, 0);
bufferPos = 0;
Arrays.fill(buffer, (byte) 0);// clear buffer
} else
{
System.arraycopy(message, offset, buffer, bufferPos, len);
bufferPos += len;
return;
}
}
// process blocks except last block (also if last block is full)
int messagePos;
int blockWiseLastPos = offset + len - BLOCK_LENGTH_BYTES;
for (messagePos = offset + remainingLength; messagePos < blockWiseLastPos; messagePos += BLOCK_LENGTH_BYTES)
{ // block wise 128 bytes
// without buffer:
t0 += BLOCK_LENGTH_BYTES;
if (t0 == 0)
{
t1++;
}
compress(message, messagePos);
}
// fill the buffer with left bytes, this might be a full block
System.arraycopy(message, messagePos, buffer, 0, offset + len
- messagePos);
bufferPos += offset + len - messagePos;
}
/**
* close the digest, producing the final digest value. The doFinal
* call leaves the digest reset.
* Key, salt and personal string remain.
*
* @param out the array the digest is to be copied into.
* @param outOffset the offset into the out array the digest is to start at.
*/
public int doFinal(byte[] out, int outOffset)
{
f0 = 0xFFFFFFFFFFFFFFFFL;
t0 += bufferPos;
// bufferPos may be < 128, so (t0 == 0) does not work
// for 2^64 < message length > 2^64 - 127
if ((t0 < 0) && (bufferPos > -t0))
{
t1++;
}
compress(buffer, 0);
Arrays.fill(buffer, (byte) 0);// Holds eventually the key if input is null
Arrays.fill(internalState, 0L);
for (int i = 0; i < chainValue.length && (i * 8 < digestLength); i++)
{
byte[] bytes = long2bytes(chainValue[i]);
if (i * 8 < digestLength - 8)
{
System.arraycopy(bytes, 0, out, outOffset + i * 8, 8);
}
else
{
System.arraycopy(bytes, 0, out, outOffset + i * 8, digestLength - (i * 8));
}
}
Arrays.fill(chainValue, 0L);
reset();
return digestLength;
}
/**
* Reset the digest back to it's initial state.
* The key, the salt and the personal string will
* remain for further computations.
*/
public void reset()
{
bufferPos = 0;
f0 = 0L;
t0 = 0L;
t1 = 0L;
chainValue = null;
if (key != null)
{
System.arraycopy(key, 0, buffer, 0, key.length);
bufferPos = BLOCK_LENGTH_BYTES; // zero padding
}
init();
}
private void compress(byte[] message, int messagePos)
{
initializeInternalState();
long[] m = new long[16];
for (int j = 0; j < 16; j++)
{
m[j] = bytes2long(message, messagePos + j * 8);
}
for (int round = 0; round < rOUNDS; round++)
{
// G apply to columns of internalState:m[blake2b_sigma[round][2 *
// blockPos]] /+1
G(m[blake2b_sigma[round][0]], m[blake2b_sigma[round][1]], 0, 4, 8,
12);
G(m[blake2b_sigma[round][2]], m[blake2b_sigma[round][3]], 1, 5, 9,
13);
G(m[blake2b_sigma[round][4]], m[blake2b_sigma[round][5]], 2, 6, 10,
14);
G(m[blake2b_sigma[round][6]], m[blake2b_sigma[round][7]], 3, 7, 11,
15);
// G apply to diagonals of internalState:
G(m[blake2b_sigma[round][8]], m[blake2b_sigma[round][9]], 0, 5, 10,
15);
G(m[blake2b_sigma[round][10]], m[blake2b_sigma[round][11]], 1, 6,
11, 12);
G(m[blake2b_sigma[round][12]], m[blake2b_sigma[round][13]], 2, 7,
8, 13);
G(m[blake2b_sigma[round][14]], m[blake2b_sigma[round][15]], 3, 4,
9, 14);
}
// update chain values:
for (int offset = 0; offset < chainValue.length; offset++)
{
chainValue[offset] = chainValue[offset] ^ internalState[offset]
^ internalState[offset + 8];
}
}
private void G(long m1, long m2, int posA, int posB, int posC, int posD)
{
internalState[posA] = internalState[posA] + internalState[posB] + m1;
internalState[posD] = rotr64(internalState[posD] ^ internalState[posA],
32);
internalState[posC] = internalState[posC] + internalState[posD];
internalState[posB] = rotr64(internalState[posB] ^ internalState[posC],
24); // replaces 25 of BLAKE
internalState[posA] = internalState[posA] + internalState[posB] + m2;
internalState[posD] = rotr64(internalState[posD] ^ internalState[posA],
16);
internalState[posC] = internalState[posC] + internalState[posD];
internalState[posB] = rotr64(internalState[posB] ^ internalState[posC],
63); // replaces 11 of BLAKE
}
private long rotr64(long x, int rot)
{
return x >>> rot | (x << (64 - rot));
}
// convert one long value in byte array
// little-endian byte order!
private final byte[] long2bytes(long longValue)
{
return new byte[]
{ (byte) longValue, (byte) (longValue >> 8),
(byte) (longValue >> 16), (byte) (longValue >> 24),
(byte) (longValue >> 32), (byte) (longValue >> 40),
(byte) (longValue >> 48), (byte) (longValue >> 56)
};
}
// little-endian byte order!
private final long bytes2long(byte[] byteArray, int offset)
{
return (((long) byteArray[offset] & 0xFF)
| (((long) byteArray[offset + 1] & 0xFF) << 8)
| (((long) byteArray[offset + 2] & 0xFF) << 16)
| (((long) byteArray[offset + 3] & 0xFF) << 24)
| (((long) byteArray[offset + 4] & 0xFF) << 32)
| (((long) byteArray[offset + 5] & 0xFF) << 40)
| (((long) byteArray[offset + 6] & 0xFF) << 48)
| (((long) byteArray[offset + 7] & 0xFF) << 56));
}
/**
* return the algorithm name
*
* @return the algorithm name
*/
public String getAlgorithmName()
{
return "Blake2b";
}
/**
* return the size, in bytes, of the digest produced by this message digest.
*
* @return the size, in bytes, of the digest produced by this message digest.
*/
public int getDigestSize()
{
return digestLength;
}
/**
* Return the size in bytes of the internal buffer the digest applies it's compression
* function to.
*
* @return byte length of the digests internal buffer.
*/
public int getByteLength()
{
return BLOCK_LENGTH_BYTES;
}
/**
* Overwrite the key
* if it is no longer used (zeroization)
*/
public void clearKey()
{
if (key != null)
{
Arrays.fill(key, (byte) 0);
Arrays.fill(buffer, (byte) 0);
}
}
/**
* Overwrite the salt (pepper) if it
* is secret and no longer used (zeroization)
*/
public void clearSalt()
{
if (salt != null)
{
Arrays.fill(salt, (byte) 0);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy