org.bouncycastle.crypto.signers.ECDSASigner Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-jdk14 Show documentation
Show all versions of bcprov-ext-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4. Note: this package includes the NTRU encryption algorithms.
package org.bouncycastle.crypto.signers;
import java.math.BigInteger;
import java.security.SecureRandom;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.DSA;
import org.bouncycastle.crypto.params.ECDomainParameters;
import org.bouncycastle.crypto.params.ECKeyParameters;
import org.bouncycastle.crypto.params.ECPrivateKeyParameters;
import org.bouncycastle.crypto.params.ECPublicKeyParameters;
import org.bouncycastle.crypto.params.ParametersWithRandom;
import org.bouncycastle.math.ec.ECAlgorithms;
import org.bouncycastle.math.ec.ECConstants;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.ec.ECMultiplier;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.ec.FixedPointCombMultiplier;
/**
* EC-DSA as described in X9.62
*/
public class ECDSASigner
implements ECConstants, DSA
{
private final DSAKCalculator kCalculator;
private ECKeyParameters key;
private SecureRandom random;
/**
* Default configuration, random K values.
*/
public ECDSASigner()
{
this.kCalculator = new RandomDSAKCalculator();
}
/**
* Configuration with an alternate, possibly deterministic calculator of K.
*
* @param kCalculator a K value calculator.
*/
public ECDSASigner(DSAKCalculator kCalculator)
{
this.kCalculator = kCalculator;
}
public void init(
boolean forSigning,
CipherParameters param)
{
SecureRandom providedRandom = null;
if (forSigning)
{
if (param instanceof ParametersWithRandom)
{
ParametersWithRandom rParam = (ParametersWithRandom)param;
this.key = (ECPrivateKeyParameters)rParam.getParameters();
providedRandom = rParam.getRandom();
}
else
{
this.key = (ECPrivateKeyParameters)param;
}
}
else
{
this.key = (ECPublicKeyParameters)param;
}
this.random = initSecureRandom(forSigning && !kCalculator.isDeterministic(), providedRandom);
}
// 5.3 pg 28
/**
* generate a signature for the given message using the key we were
* initialised with. For conventional DSA the message should be a SHA-1
* hash of the message of interest.
*
* @param message the message that will be verified later.
*/
public BigInteger[] generateSignature(
byte[] message)
{
ECDomainParameters ec = key.getParameters();
BigInteger n = ec.getN();
BigInteger e = calculateE(n, message);
BigInteger d = ((ECPrivateKeyParameters)key).getD();
if (kCalculator.isDeterministic())
{
kCalculator.init(n, d, message);
}
else
{
kCalculator.init(n, random);
}
BigInteger r, s;
ECMultiplier basePointMultiplier = createBasePointMultiplier();
// 5.3.2
do // generate s
{
BigInteger k;
do // generate r
{
k = kCalculator.nextK();
ECPoint p = basePointMultiplier.multiply(ec.getG(), k).normalize();
// 5.3.3
r = p.getAffineXCoord().toBigInteger().mod(n);
}
while (r.equals(ZERO));
s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n);
}
while (s.equals(ZERO));
return new BigInteger[]{ r, s };
}
// 5.4 pg 29
/**
* return true if the value r and s represent a DSA signature for
* the passed in message (for standard DSA the message should be
* a SHA-1 hash of the real message to be verified).
*/
public boolean verifySignature(
byte[] message,
BigInteger r,
BigInteger s)
{
ECDomainParameters ec = key.getParameters();
BigInteger n = ec.getN();
BigInteger e = calculateE(n, message);
// r in the range [1,n-1]
if (r.compareTo(ONE) < 0 || r.compareTo(n) >= 0)
{
return false;
}
// s in the range [1,n-1]
if (s.compareTo(ONE) < 0 || s.compareTo(n) >= 0)
{
return false;
}
BigInteger c = s.modInverse(n);
BigInteger u1 = e.multiply(c).mod(n);
BigInteger u2 = r.multiply(c).mod(n);
ECPoint G = ec.getG();
ECPoint Q = ((ECPublicKeyParameters)key).getQ();
ECPoint point = ECAlgorithms.sumOfTwoMultiplies(G, u1, Q, u2);
// components must be bogus.
if (point.isInfinity())
{
return false;
}
/*
* If possible, avoid normalizing the point (to save a modular inversion in the curve field).
*
* There are ~cofactor elements of the curve field that reduce (modulo the group order) to 'r'.
* If the cofactor is known and small, we generate those possible field values and project each
* of them to the same "denominator" (depending on the particular projective coordinates in use)
* as the calculated point.X. If any of the projected values matches point.X, then we have:
* (point.X / Denominator mod p) mod n == r
* as required, and verification succeeds.
*
* Based on an original idea by Gregory Maxwell (https://github.com/gmaxwell), as implemented in
* the libsecp256k1 project (https://github.com/bitcoin/secp256k1).
*/
ECCurve curve = point.getCurve();
if (curve != null)
{
BigInteger cofactor = curve.getCofactor();
if (cofactor != null && cofactor.compareTo(EIGHT) <= 0)
{
ECFieldElement D = getDenominator(curve.getCoordinateSystem(), point);
if (D != null && !D.isZero())
{
ECFieldElement X = point.getXCoord();
while (curve.isValidFieldElement(r))
{
ECFieldElement R = curve.fromBigInteger(r).multiply(D);
if (R.equals(X))
{
return true;
}
r = r.add(n);
}
return false;
}
}
}
BigInteger v = point.normalize().getAffineXCoord().toBigInteger().mod(n);
return v.equals(r);
}
protected BigInteger calculateE(BigInteger n, byte[] message)
{
int log2n = n.bitLength();
int messageBitLength = message.length * 8;
BigInteger e = new BigInteger(1, message);
if (log2n < messageBitLength)
{
e = e.shiftRight(messageBitLength - log2n);
}
return e;
}
protected ECMultiplier createBasePointMultiplier()
{
return new FixedPointCombMultiplier();
}
protected ECFieldElement getDenominator(int coordinateSystem, ECPoint p)
{
switch (coordinateSystem)
{
case ECCurve.COORD_HOMOGENEOUS:
case ECCurve.COORD_LAMBDA_PROJECTIVE:
case ECCurve.COORD_SKEWED:
return p.getZCoord(0);
case ECCurve.COORD_JACOBIAN:
case ECCurve.COORD_JACOBIAN_CHUDNOVSKY:
case ECCurve.COORD_JACOBIAN_MODIFIED:
return p.getZCoord(0).square();
default:
return null;
}
}
protected SecureRandom initSecureRandom(boolean needed, SecureRandom provided)
{
return !needed ? null : (provided != null) ? provided : new SecureRandom();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy