All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.modes.EAXBlockCipher Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4. Note: this package includes the NTRU encryption algorithms.

There is a newer version: 1.78.1
Show newest version
package org.bouncycastle.crypto.modes;

import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.DataLengthException;
import org.bouncycastle.crypto.InvalidCipherTextException;
import org.bouncycastle.crypto.Mac;
import org.bouncycastle.crypto.OutputLengthException;
import org.bouncycastle.crypto.macs.CMac;
import org.bouncycastle.crypto.params.AEADParameters;
import org.bouncycastle.crypto.params.ParametersWithIV;
import org.bouncycastle.util.Arrays;

/**
 * A Two-Pass Authenticated-Encryption Scheme Optimized for Simplicity and
 * Efficiency - by M. Bellare, P. Rogaway, D. Wagner.
 *
 * https://www.cs.ucdavis.edu/~rogaway/papers/eax.pdf
 *
 * EAX is an AEAD scheme based on CTR and OMAC1/CMAC, that uses a single block
 * cipher to encrypt and authenticate data. It's on-line (the length of a
 * message isn't needed to begin processing it), has good performances, it's
 * simple and provably secure (provided the underlying block cipher is secure).
 *
 * Of course, this implementations is NOT thread-safe.
 */
public class EAXBlockCipher
    implements AEADBlockCipher
{
    private static final byte nTAG = 0x0;

    private static final byte hTAG = 0x1;

    private static final byte cTAG = 0x2;

    private SICBlockCipher cipher;

    private boolean forEncryption;

    private int blockSize;

    private Mac mac;

    private byte[] nonceMac;
    private byte[] associatedTextMac;
    private byte[] macBlock;

    private int macSize;
    private byte[] bufBlock;
    private int bufOff;

    private boolean cipherInitialized;
    private byte[] initialAssociatedText;

    /**
     * Constructor that accepts an instance of a block cipher engine.
     *
     * @param cipher the engine to use
     */
    public EAXBlockCipher(BlockCipher cipher)
    {
        blockSize = cipher.getBlockSize();
        mac = new CMac(cipher);
        macBlock = new byte[blockSize];
        associatedTextMac = new byte[mac.getMacSize()];
        nonceMac = new byte[mac.getMacSize()];
        this.cipher = new SICBlockCipher(cipher);
    }

    public String getAlgorithmName()
    {
        return cipher.getUnderlyingCipher().getAlgorithmName() + "/EAX";
    }

    public BlockCipher getUnderlyingCipher()
    {
        return cipher.getUnderlyingCipher();
    }

    public int getBlockSize()
    {
        return cipher.getBlockSize();
    }

    public void init(boolean forEncryption, CipherParameters params)
        throws IllegalArgumentException
    {
        this.forEncryption = forEncryption;

        byte[] nonce;
        CipherParameters keyParam;

        if (params instanceof AEADParameters)
        {
            AEADParameters param = (AEADParameters)params;

            nonce = param.getNonce();
            initialAssociatedText = param.getAssociatedText();
            macSize = param.getMacSize() / 8;
            keyParam = param.getKey();
        }
        else if (params instanceof ParametersWithIV)
        {
            ParametersWithIV param = (ParametersWithIV)params;

            nonce = param.getIV();
            initialAssociatedText = null;
            macSize = mac.getMacSize() / 2;
            keyParam = param.getParameters();
        }
        else
        {
            throw new IllegalArgumentException("invalid parameters passed to EAX");
        }

        bufBlock = new byte[forEncryption ? blockSize : (blockSize + macSize)];

        byte[] tag = new byte[blockSize];

        // Key reuse implemented in CBC mode of underlying CMac
        mac.init(keyParam);

        tag[blockSize - 1] = nTAG;
        mac.update(tag, 0, blockSize);
        mac.update(nonce, 0, nonce.length);
        mac.doFinal(nonceMac, 0);

        // Same BlockCipher underlies this and the mac, so reuse last key on cipher
        cipher.init(true, new ParametersWithIV(keyParam, nonceMac));

        reset();
    }

    private void initCipher()
    {
        if (cipherInitialized)
        {
            return;
        }

        cipherInitialized = true;

        mac.doFinal(associatedTextMac, 0);

        byte[] tag = new byte[blockSize];
        tag[blockSize - 1] = cTAG;
        mac.update(tag, 0, blockSize);
    }

    private void calculateMac()
    {
        byte[] outC = new byte[blockSize];
        mac.doFinal(outC, 0);

        for (int i = 0; i < macBlock.length; i++)
        {
            macBlock[i] = (byte)(nonceMac[i] ^ associatedTextMac[i] ^ outC[i]);
        }
    }

    public void reset()
    {
        reset(true);
    }

    private void reset(
        boolean clearMac)
    {
        cipher.reset(); // TODO Redundant since the mac will reset it?
        mac.reset();

        bufOff = 0;
        Arrays.fill(bufBlock, (byte)0);

        if (clearMac)
        {
            Arrays.fill(macBlock, (byte)0);
        }

        byte[] tag = new byte[blockSize];
        tag[blockSize - 1] = hTAG;
        mac.update(tag, 0, blockSize);

        cipherInitialized = false;

        if (initialAssociatedText != null)
        {
           processAADBytes(initialAssociatedText, 0, initialAssociatedText.length);
        }
    }

    public void processAADByte(byte in)
    {
        if (cipherInitialized)
        {
            throw new IllegalStateException("AAD data cannot be added after encryption/decryption processing has begun.");
        }
        mac.update(in);
    }

    public void processAADBytes(byte[] in, int inOff, int len)
    {
        if (cipherInitialized)
        {
            throw new IllegalStateException("AAD data cannot be added after encryption/decryption processing has begun.");
        }
        mac.update(in, inOff, len);
    }

    public int processByte(byte in, byte[] out, int outOff)
        throws DataLengthException
    {
        initCipher();

        return process(in, out, outOff);
    }

    public int processBytes(byte[] in, int inOff, int len, byte[] out, int outOff)
        throws DataLengthException
    {
        initCipher();

        if (in.length < (inOff + len))
        {
            throw new DataLengthException("Input buffer too short");
        }

        int resultLen = 0;

        for (int i = 0; i != len; i++)
        {
            resultLen += process(in[inOff + i], out, outOff + resultLen);
        }

        return resultLen;
    }

    public int doFinal(byte[] out, int outOff)
        throws IllegalStateException, InvalidCipherTextException
    {
        initCipher();

        int extra = bufOff;
        byte[] tmp = new byte[bufBlock.length];

        bufOff = 0;

        if (forEncryption)
        {
            if (out.length < (outOff + extra + macSize))
            {
                throw new OutputLengthException("Output buffer too short");
            }
            cipher.processBlock(bufBlock, 0, tmp, 0);

            System.arraycopy(tmp, 0, out, outOff, extra);

            mac.update(tmp, 0, extra);

            calculateMac();

            System.arraycopy(macBlock, 0, out, outOff + extra, macSize);

            reset(false);

            return extra + macSize;
        }
        else
        {
            if (extra < macSize)
            {
                throw new InvalidCipherTextException("data too short");
            }
            if (out.length < (outOff + extra - macSize))
            {
                throw new OutputLengthException("Output buffer too short");
            }
            if (extra > macSize)
            {
                mac.update(bufBlock, 0, extra - macSize);

                cipher.processBlock(bufBlock, 0, tmp, 0);

                System.arraycopy(tmp, 0, out, outOff, extra - macSize);
            }

            calculateMac();

            if (!verifyMac(bufBlock, extra - macSize))
            {
                throw new InvalidCipherTextException("mac check in EAX failed");
            }

            reset(false);

            return extra - macSize;
        }
    }

    public byte[] getMac()
    {
        byte[] mac = new byte[macSize];

        System.arraycopy(macBlock, 0, mac, 0, macSize);

        return mac;
    }

    public int getUpdateOutputSize(int len)
    {
        int totalData = len + bufOff;
        if (!forEncryption)
        {
            if (totalData < macSize)
            {
                return 0;
            }
            totalData -= macSize;
        }
        return totalData - totalData % blockSize;
    }

    public int getOutputSize(int len)
    {
        int totalData = len + bufOff;

        if (forEncryption)
        {
            return totalData + macSize;
        }

        return totalData < macSize ? 0 : totalData - macSize;
    }

    private int process(byte b, byte[] out, int outOff)
    {
        bufBlock[bufOff++] = b;

        if (bufOff == bufBlock.length)
        {
            if (out.length < (outOff + blockSize))
            {
                throw new OutputLengthException("Output buffer is too short");
            }
            // TODO Could move the processByte(s) calls to here
//            initCipher();

            int size;

            if (forEncryption)
            {
                size = cipher.processBlock(bufBlock, 0, out, outOff);

                mac.update(out, outOff, blockSize);
            }
            else
            {
                mac.update(bufBlock, 0, blockSize);

                size = cipher.processBlock(bufBlock, 0, out, outOff);
            }

            bufOff = 0;
            if (!forEncryption)
            {
                System.arraycopy(bufBlock, blockSize, bufBlock, 0, macSize);
                bufOff = macSize;
            }

            return size;
        }

        return 0;
    }

    private boolean verifyMac(byte[] mac, int off)
    {
        int nonEqual = 0;

        for (int i = 0; i < macSize; i++)
        {
            nonEqual |= (macBlock[i] ^ mac[off + i]);
        }

        return nonEqual == 0;
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy