org.bouncycastle.math.ec.Tnaf Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-jdk14 Show documentation
Show all versions of bcprov-ext-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4. Note: this package includes the NTRU encryption algorithms.
package org.bouncycastle.math.ec;
import java.math.BigInteger;
import org.bouncycastle.util.BigIntegers;
/**
* Class holding methods for point multiplication based on the window
* τ-adic nonadjacent form (WTNAF). The algorithms are based on the
* paper "Improved Algorithms for Arithmetic on Anomalous Binary Curves"
* by Jerome A. Solinas. The paper first appeared in the Proceedings of
* Crypto 1997.
*/
class Tnaf
{
private static final BigInteger MINUS_ONE = ECConstants.ONE.negate();
private static final BigInteger MINUS_TWO = ECConstants.TWO.negate();
private static final BigInteger MINUS_THREE = ECConstants.THREE.negate();
/**
* The window width of WTNAF. The standard value of 4 is slightly less
* than optimal for running time, but keeps space requirements for
* precomputation low. For typical curves, a value of 5 or 6 results in
* a better running time. When changing this value, the
* α u
's must be computed differently, see
* e.g. "Guide to Elliptic Curve Cryptography", Darrel Hankerson,
* Alfred Menezes, Scott Vanstone, Springer-Verlag New York Inc., 2004,
* p. 121-122
*/
public static final byte WIDTH = 4;
/**
* The α u's for a=0 as an array
* of ZTauElements.
*/
public static final ZTauElement[] alpha0 =
{
null, new ZTauElement(ECConstants.ONE, ECConstants.ZERO),
null, new ZTauElement(MINUS_THREE, MINUS_ONE),
null, new ZTauElement(MINUS_ONE, MINUS_ONE),
null, new ZTauElement(ECConstants.ONE, MINUS_ONE),
null, new ZTauElement(MINUS_ONE, ECConstants.ONE),
null, new ZTauElement(ECConstants.ONE, ECConstants.ONE),
null, new ZTauElement(ECConstants.THREE, ECConstants.ONE),
null, new ZTauElement(MINUS_ONE, ECConstants.ZERO),
};
/**
* The α u's for a=0 as an array
* of TNAFs.
*/
public static final byte[][] alpha0Tnaf = {
null, {1}, null, {-1, 0, 1}, null, {1, 0, 1}, null, {-1, 0, 0, 1}
};
/**
* The α u's for a=1 as an array
* of ZTauElements.
*/
public static final ZTauElement[] alpha1 =
{
null, new ZTauElement(ECConstants.ONE, ECConstants.ZERO),
null, new ZTauElement(MINUS_THREE, ECConstants.ONE),
null, new ZTauElement(MINUS_ONE, ECConstants.ONE),
null, new ZTauElement(ECConstants.ONE, ECConstants.ONE),
null, new ZTauElement(MINUS_ONE, MINUS_ONE),
null, new ZTauElement(ECConstants.ONE, MINUS_ONE),
null, new ZTauElement(ECConstants.THREE, MINUS_ONE),
null, new ZTauElement(MINUS_ONE, ECConstants.ZERO),
};
/**
* The α u's for a=1 as an array
* of TNAFs.
*/
public static final byte[][] alpha1Tnaf = {
null, {1}, null, {-1, 0, 1}, null, {1, 0, 1}, null, {-1, 0, 0, -1}
};
/**
* Computes the norm of an element λ of
* Z[τ].
* @param mu The parameter μ of the elliptic curve.
* @param lambda The element λ of
* Z[τ].
* @return The norm of λ.
*/
public static BigInteger norm(final byte mu, ZTauElement lambda)
{
// s1 = u^2
BigInteger s1 = lambda.u.multiply(lambda.u);
// s2 = u * v
// BigInteger s2 = lambda.u.multiply(lambda.v);
// s3 = 2 * v^2
// BigInteger s3 = lambda.v.multiply(lambda.v).shiftLeft(1);
if (mu == 1)
{
// return s1.add(s2).add(s3);
return lambda.v.shiftLeft(1).add(lambda.u).multiply(lambda.v).add(s1);
}
else if (mu == -1)
{
// return s1.subtract(s2).add(s3);
return lambda.v.shiftLeft(1).subtract(lambda.u).multiply(lambda.v).add(s1);
}
else
{
throw new IllegalArgumentException("mu must be 1 or -1");
}
}
/**
* Computes the norm of an element λ of
* R[τ], where λ = u + vτ
* and u and u are real numbers (elements of
* R).
* @param mu The parameter μ of the elliptic curve.
* @param u The real part of the element λ of
* R[τ].
* @param v The τ-adic part of the element
* λ of R[τ].
* @return The norm of λ.
*/
public static SimpleBigDecimal norm(final byte mu, SimpleBigDecimal u,
SimpleBigDecimal v)
{
SimpleBigDecimal norm;
// s1 = u^2
SimpleBigDecimal s1 = u.multiply(u);
// s2 = u * v
SimpleBigDecimal s2 = u.multiply(v);
// s3 = 2 * v^2
SimpleBigDecimal s3 = v.multiply(v).shiftLeft(1);
if (mu == 1)
{
norm = s1.add(s2).add(s3);
}
else if (mu == -1)
{
norm = s1.subtract(s2).add(s3);
}
else
{
throw new IllegalArgumentException("mu must be 1 or -1");
}
return norm;
}
/**
* Rounds an element λ of R[τ]
* to an element of Z[τ], such that their difference
* has minimal norm. λ is given as
* λ = λ 0 + λ 1τ.
* @param lambda0 The component λ 0.
* @param lambda1 The component λ 1.
* @param mu The parameter μ of the elliptic curve. Must
* equal 1 or -1.
* @return The rounded element of Z[τ].
* @throws IllegalArgumentException if lambda0 and
* lambda1 do not have same scale.
*/
public static ZTauElement round(SimpleBigDecimal lambda0,
SimpleBigDecimal lambda1, byte mu)
{
int scale = lambda0.getScale();
if (lambda1.getScale() != scale)
{
throw new IllegalArgumentException("lambda0 and lambda1 do not " +
"have same scale");
}
if (!((mu == 1) || (mu == -1)))
{
throw new IllegalArgumentException("mu must be 1 or -1");
}
BigInteger f0 = lambda0.round();
BigInteger f1 = lambda1.round();
SimpleBigDecimal eta0 = lambda0.subtract(f0);
SimpleBigDecimal eta1 = lambda1.subtract(f1);
// eta = 2*eta0 + mu*eta1
SimpleBigDecimal eta = eta0.add(eta0);
if (mu == 1)
{
eta = eta.add(eta1);
}
else
{
// mu == -1
eta = eta.subtract(eta1);
}
// check1 = eta0 - 3*mu*eta1
// check2 = eta0 + 4*mu*eta1
SimpleBigDecimal threeEta1 = eta1.add(eta1).add(eta1);
SimpleBigDecimal fourEta1 = threeEta1.add(eta1);
SimpleBigDecimal check1;
SimpleBigDecimal check2;
if (mu == 1)
{
check1 = eta0.subtract(threeEta1);
check2 = eta0.add(fourEta1);
}
else
{
// mu == -1
check1 = eta0.add(threeEta1);
check2 = eta0.subtract(fourEta1);
}
byte h0 = 0;
byte h1 = 0;
// if eta >= 1
if (eta.compareTo(ECConstants.ONE) >= 0)
{
if (check1.compareTo(MINUS_ONE) < 0)
{
h1 = mu;
}
else
{
h0 = 1;
}
}
else
{
// eta < 1
if (check2.compareTo(ECConstants.TWO) >= 0)
{
h1 = mu;
}
}
// if eta < -1
if (eta.compareTo(MINUS_ONE) < 0)
{
if (check1.compareTo(ECConstants.ONE) >= 0)
{
h1 = (byte)-mu;
}
else
{
h0 = -1;
}
}
else
{
// eta >= -1
if (check2.compareTo(MINUS_TWO) < 0)
{
h1 = (byte)-mu;
}
}
BigInteger q0 = f0.add(BigInteger.valueOf(h0));
BigInteger q1 = f1.add(BigInteger.valueOf(h1));
return new ZTauElement(q0, q1);
}
/**
* Approximate division by n. For an integer
* k, the value λ = s k / n is
* computed to c bits of accuracy.
* @param k The parameter k.
* @param s The curve parameter s 0 or
* s 1.
* @param vm The Lucas Sequence element V m.
* @param a The parameter a of the elliptic curve.
* @param m The bit length of the finite field
* F m.
* @param c The number of bits of accuracy, i.e. the scale of the returned
* SimpleBigDecimal.
* @return The value λ = s k / n computed to
* c bits of accuracy.
*/
public static SimpleBigDecimal approximateDivisionByN(BigInteger k,
BigInteger s, BigInteger vm, byte a, int m, int c)
{
int _k = (m + 5)/2 + c;
BigInteger ns = k.shiftRight(m - _k - 2 + a);
BigInteger gs = s.multiply(ns);
BigInteger hs = gs.shiftRight(m);
BigInteger js = vm.multiply(hs);
BigInteger gsPlusJs = gs.add(js);
BigInteger ls = gsPlusJs.shiftRight(_k-c);
if (gsPlusJs.testBit(_k-c-1))
{
// round up
ls = ls.add(ECConstants.ONE);
}
return new SimpleBigDecimal(ls, c);
}
/**
* Computes the τ-adic NAF (non-adjacent form) of an
* element λ of Z[τ].
* @param mu The parameter μ of the elliptic curve.
* @param lambda The element λ of
* Z[τ].
* @return The τ-adic NAF of λ.
*/
public static byte[] tauAdicNaf(byte mu, ZTauElement lambda)
{
if (!((mu == 1) || (mu == -1)))
{
throw new IllegalArgumentException("mu must be 1 or -1");
}
BigInteger norm = norm(mu, lambda);
// Ceiling of log2 of the norm
int log2Norm = norm.bitLength();
// If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52
int maxLength = log2Norm > 30 ? log2Norm + 4 : 34;
// The array holding the TNAF
byte[] u = new byte[maxLength];
int i = 0;
// The actual length of the TNAF
int length = 0;
BigInteger r0 = lambda.u;
BigInteger r1 = lambda.v;
while(!((r0.equals(ECConstants.ZERO)) && (r1.equals(ECConstants.ZERO))))
{
// If r0 is odd
if (r0.testBit(0))
{
u[i] = (byte) ECConstants.TWO.subtract((r0.subtract(r1.shiftLeft(1))).mod(ECConstants.FOUR)).intValue();
// r0 = r0 - u[i]
if (u[i] == 1)
{
r0 = r0.clearBit(0);
}
else
{
// u[i] == -1
r0 = r0.add(ECConstants.ONE);
}
length = i;
}
else
{
u[i] = 0;
}
BigInteger t = r0;
BigInteger s = r0.shiftRight(1);
if (mu == 1)
{
r0 = r1.add(s);
}
else
{
// mu == -1
r0 = r1.subtract(s);
}
r1 = t.shiftRight(1).negate();
i++;
}
length++;
// Reduce the TNAF array to its actual length
byte[] tnaf = new byte[length];
System.arraycopy(u, 0, tnaf, 0, length);
return tnaf;
}
/**
* Applies the operation τ() to an
* ECPoint.AbstractF2m.
* @param p The ECPoint.AbstractF2m to which τ() is applied.
* @return τ(p)
*/
public static ECPoint.AbstractF2m tau(ECPoint.AbstractF2m p)
{
return p.tau();
}
/**
* Returns the parameter μ of the elliptic curve.
* @param curve The elliptic curve from which to obtain μ.
* The curve must be a Koblitz curve, i.e. a equals
* 0 or 1 and b equals
* 1.
* @return μ of the elliptic curve.
* @throws IllegalArgumentException if the given ECCurve is not a Koblitz
* curve.
*/
public static byte getMu(ECCurve.AbstractF2m curve)
{
if (!curve.isKoblitz())
{
throw new IllegalArgumentException("No Koblitz curve (ABC), TNAF multiplication not possible");
}
if (curve.getA().isZero())
{
return -1;
}
return 1;
}
public static byte getMu(ECFieldElement curveA)
{
return (byte)(curveA.isZero() ? -1 : 1);
}
public static byte getMu(int curveA)
{
return (byte)(curveA == 0 ? -1 : 1);
}
/**
* Calculates the Lucas Sequence elements U k-1 and
* U k or V k-1 and
* V k.
* @param mu The parameter μ of the elliptic curve.
* @param k The index of the second element of the Lucas Sequence to be
* returned.
* @param doV If set to true, computes V k-1 and
* V k, otherwise U k-1 and
* U k.
* @return An array with 2 elements, containing U k-1
* and U k or V k-1
* and V k.
*/
public static BigInteger[] getLucas(byte mu, int k, boolean doV)
{
if (!((mu == 1) || (mu == -1)))
{
throw new IllegalArgumentException("mu must be 1 or -1");
}
BigInteger u0, u1, u2;
if (doV)
{
u0 = ECConstants.TWO;
u1 = BigInteger.valueOf(mu);
}
else
{
u0 = ECConstants.ZERO;
u1 = ECConstants.ONE;
}
for (int i = 1; i < k; i++)
{
// u2 = mu*u1 - 2*u0;
BigInteger s = u1;
if (mu < 0)
{
s = s.negate();
}
u2 = s.subtract(u0.shiftLeft(1));
u0 = u1;
u1 = u2;
}
return new BigInteger[]{ u0, u1 };
}
/**
* Computes the auxiliary value t w. If the width is
* 4, then for mu = 1, t w = 6 and for
* mu = -1, t w = 10
* @param mu The parameter μ of the elliptic curve.
* @param w The window width of the WTNAF.
* @return the auxiliary value t w
*/
public static BigInteger getTw(byte mu, int w)
{
if (w == 4)
{
if (mu == 1)
{
return BigInteger.valueOf(6);
}
else
{
// mu == -1
return BigInteger.valueOf(10);
}
}
else
{
// For w <> 4, the values must be computed
BigInteger[] us = getLucas(mu, w, false);
BigInteger twoToW = ECConstants.ZERO.setBit(w);
BigInteger u1invert = us[1].modInverse(twoToW);
return us[0].shiftLeft(1).multiply(u1invert).mod(twoToW);
}
}
/**
* Computes the auxiliary values s 0 and
* s 1 used for partial modular reduction.
* @param curve The elliptic curve for which to compute
* s 0 and s 1.
* @throws IllegalArgumentException if curve is not a
* Koblitz curve (Anomalous Binary Curve, ABC).
*/
public static BigInteger[] getSi(ECCurve.AbstractF2m curve)
{
if (!curve.isKoblitz())
{
throw new IllegalArgumentException("si is defined for Koblitz curves only");
}
return getSi(curve.getFieldSize(), curve.getA().toBigInteger().intValue(), curve.getCofactor());
}
public static BigInteger[] getSi(int fieldSize, int curveA, BigInteger cofactor)
{
byte mu = getMu(curveA);
int shifts = getShiftsForCofactor(cofactor);
int index = fieldSize + 3 - curveA;
BigInteger[] ui = getLucas(mu, index, false);
if (mu == 1)
{
ui[0] = ui[0].negate();
ui[1] = ui[1].negate();
}
BigInteger dividend0 = ECConstants.ONE.add(ui[1]).shiftRight(shifts);
BigInteger dividend1 = ECConstants.ONE.add(ui[0]).shiftRight(shifts).negate();
return new BigInteger[] { dividend0, dividend1 };
}
protected static int getShiftsForCofactor(BigInteger h)
{
if (h != null)
{
if (h.equals(ECConstants.TWO))
{
return 1;
}
if (h.equals(ECConstants.FOUR))
{
return 2;
}
}
throw new IllegalArgumentException("h (Cofactor) must be 2 or 4");
}
/**
* Partial modular reduction modulo
* (τ m - 1)/(τ - 1).
* @param k The integer to be reduced.
* @param m The bitlength of the underlying finite field.
* @param a The parameter a of the elliptic curve.
* @param s The auxiliary values s 0 and
* s 1.
* @param mu The parameter μ of the elliptic curve.
* @param c The precision (number of bits of accuracy) of the partial
* modular reduction.
* @return ρ := k partmod (τ m - 1)/(τ - 1)
*/
public static ZTauElement partModReduction(ECCurve.AbstractF2m curve, BigInteger k, byte a, byte mu, byte c)
{
int m = curve.getFieldSize();
BigInteger[] s = curve.getSi();
// d0 = s[0] + mu*s[1]; mu is either 1 or -1
BigInteger d0;
if (mu == 1)
{
d0 = s[0].add(s[1]);
}
else
{
d0 = s[0].subtract(s[1]);
}
BigInteger vm;
if (curve.isKoblitz())
{
/*
* Jerome A. Solinas, "Improved Algorithms for Arithmetic on Anomalous Binary Curves", (21).
*/
vm = ECConstants.ONE.shiftLeft(m).add(ECConstants.ONE).subtract(
curve.getOrder().multiply(curve.getCofactor()));
}
else
{
BigInteger[] v = getLucas(mu, m, true);
vm = v[1];
}
SimpleBigDecimal lambda0 = approximateDivisionByN(k, s[0], vm, a, m, c);
SimpleBigDecimal lambda1 = approximateDivisionByN(k, s[1], vm, a, m, c);
ZTauElement q = round(lambda0, lambda1, mu);
// r0 = n - d0*q0 - 2*s1*q1
BigInteger r0 = k.subtract(d0.multiply(q.u)).subtract(
s[1].multiply(q.v).shiftLeft(1));
// r1 = s1*q0 - s0*q1
BigInteger r1 = s[1].multiply(q.u).subtract(s[0].multiply(q.v));
return new ZTauElement(r0, r1);
}
/**
* Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m}
* by a BigInteger using the reduced τ-adic
* NAF (RTNAF) method.
* @param p The ECPoint.AbstractF2m to multiply.
* @param k The BigInteger by which to multiply p.
* @return k * p
*/
public static ECPoint.AbstractF2m multiplyRTnaf(ECPoint.AbstractF2m p, BigInteger k)
{
ECCurve.AbstractF2m curve = (ECCurve.AbstractF2m) p.getCurve();
int a = curve.getA().toBigInteger().intValue();
byte mu = getMu(a);
ZTauElement rho = partModReduction(curve, k, (byte)a, mu, (byte)10);
return multiplyTnaf(p, rho);
}
/**
* Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m}
* by an element λ of Z[τ]
* using the τ-adic NAF (TNAF) method.
* @param p The ECPoint.AbstractF2m to multiply.
* @param lambda The element λ of
* Z[τ].
* @return λ * p
*/
public static ECPoint.AbstractF2m multiplyTnaf(ECPoint.AbstractF2m p, ZTauElement lambda)
{
ECCurve.AbstractF2m curve = (ECCurve.AbstractF2m)p.getCurve();
ECPoint.AbstractF2m pNeg = (ECPoint.AbstractF2m)p.negate();
byte mu = getMu(curve.getA());
byte[] u = tauAdicNaf(mu, lambda);
return multiplyFromTnaf(p, pNeg, u);
}
/**
* Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m}
* by an element λ of Z[τ]
* using the τ-adic NAF (TNAF) method, given the TNAF
* of λ.
* @param p The ECPoint.AbstractF2m to multiply.
* @param u The the TNAF of λ..
* @return λ * p
*/
public static ECPoint.AbstractF2m multiplyFromTnaf(ECPoint.AbstractF2m p, ECPoint.AbstractF2m pNeg, byte[] u)
{
ECCurve curve = p.getCurve();
ECPoint.AbstractF2m q = (ECPoint.AbstractF2m)curve.getInfinity();
int tauCount = 0;
for (int i = u.length - 1; i >= 0; i--)
{
++tauCount;
byte ui = u[i];
if (ui != 0)
{
q = q.tauPow(tauCount);
tauCount = 0;
ECPoint x = ui > 0 ? p : pNeg;
q = (ECPoint.AbstractF2m)q.add(x);
}
}
if (tauCount > 0)
{
q = q.tauPow(tauCount);
}
return q;
}
/**
* Computes the [τ]-adic window NAF of an element
* λ of Z[τ].
* @param mu The parameter μ of the elliptic curve.
* @param lambda The element λ of
* Z[τ] of which to compute the
* [τ]-adic NAF.
* @param width The window width of the resulting WNAF.
* @param pow2w 2 width.
* @param tw The auxiliary value t w.
* @param alpha The α u's for the window width.
* @return The [τ]-adic window NAF of
* λ.
*/
public static byte[] tauAdicWNaf(byte mu, ZTauElement lambda, int width, int tw, ZTauElement[] alpha)
{
if (!(mu == 1 || mu == -1))
{
throw new IllegalArgumentException("mu must be 1 or -1");
}
BigInteger norm = norm(mu, lambda);
// Ceiling of log2 of the norm
int log2Norm = norm.bitLength();
// If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52
int maxLength = log2Norm > 30 ? log2Norm + 4 + width : 34 + width;
// The array holding the TNAF
byte[] u = new byte[maxLength];
int pow2Width = 1 << width;
int pow2Mask = pow2Width - 1;
int s = 32 - width;
// Split lambda into two BigIntegers to simplify calculations
BigInteger R0 = lambda.u;
BigInteger R1 = lambda.v;
int uPos = 0;
// while lambda <> (0, 0)
while (R0.bitLength() > 62 || R1.bitLength() > 62)
{
if (R0.testBit(0))
{
int uVal = R0.intValue() + (R1.intValue() * tw);
int alphaPos = uVal & pow2Mask;
u[uPos] = (byte)((uVal << s) >> s);
R0 = R0.subtract(alpha[alphaPos].u);
R1 = R1.subtract(alpha[alphaPos].v);
}
++uPos;
BigInteger t = R0.shiftRight(1);
if (mu == 1)
{
R0 = R1.add(t);
}
else // mu == -1
{
R0 = R1.subtract(t);
}
R1 = t.negate();
}
long r0_64 = BigIntegers.longValueExact(R0);
long r1_64 = BigIntegers.longValueExact(R1);
// while lambda <> (0, 0)
while ((r0_64 | r1_64) != 0L)
{
if ((r0_64 & 1L) != 0L)
{
int uVal = (int)r0_64 + ((int)r1_64 * tw);
int alphaPos = uVal & pow2Mask;
u[uPos] = (byte)((uVal << s) >> s);
r0_64 -= alpha[alphaPos].u.intValue();
r1_64 -= alpha[alphaPos].v.intValue();
}
++uPos;
long t_64 = r0_64 >> 1;
if (mu == 1)
{
r0_64 = r1_64 + t_64;
}
else // mu == -1
{
r0_64 = r1_64 - t_64;
}
r1_64 = -t_64;
}
return u;
}
/**
* Does the precomputation for WTNAF multiplication.
* @param p The ECPoint for which to do the precomputation.
* @param a The parameter a of the elliptic curve.
* @return The precomputation array for p.
*/
public static ECPoint.AbstractF2m[] getPreComp(ECPoint.AbstractF2m p, byte a)
{
ECPoint.AbstractF2m pNeg = (ECPoint.AbstractF2m)p.negate();
byte[][] alphaTnaf = (a == 0) ? Tnaf.alpha0Tnaf : Tnaf.alpha1Tnaf;
ECPoint.AbstractF2m[] pu = new ECPoint.AbstractF2m[(alphaTnaf.length + 1) >>> 1];
pu[0] = p;
int precompLen = alphaTnaf.length;
for (int i = 3; i < precompLen; i += 2)
{
pu[i >>> 1] = Tnaf.multiplyFromTnaf(p, pNeg, alphaTnaf[i]);
}
p.getCurve().normalizeAll(pu);
return pu;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy