org.bouncycastle.math.ec.rfc8032.Scalar25519 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-jdk14 Show documentation
Show all versions of bcprov-ext-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4. Note: this package includes the NTRU encryption algorithms.
package org.bouncycastle.math.ec.rfc8032;
import org.bouncycastle.math.raw.Nat;
import org.bouncycastle.math.raw.Nat256;
abstract class Scalar25519
{
static final int SIZE = 8;
private static final long M08L = 0x000000FFL;
private static final long M28L = 0x0FFFFFFFL;
private static final long M32L = 0xFFFFFFFFL;
private static final int TARGET_LENGTH = 254;
private static final int[] L = new int[]{ 0x5CF5D3ED, 0x5812631A, 0xA2F79CD6, 0x14DEF9DE, 0x00000000, 0x00000000,
0x00000000, 0x10000000 };
private static final int[] LSq = new int[]{ 0xAB128969, 0xE2EDF685, 0x2298A31D, 0x68039276, 0xD217F5BE, 0x3DCEEC73,
0x1B7C309A, 0xA1B39941, 0x4B9EBA7D, 0xCB024C63, 0xD45EF39A, 0x029BDF3B, 0x00000000, 0x00000000, 0x00000000,
0x01000000 };
private static final int L0 = -0x030A2C13; // L0:26/--
private static final int L1 = 0x012631A6; // L1:24/22
private static final int L2 = 0x079CD658; // L2:27/--
private static final int L3 = -0x006215D1; // L3:23/--
private static final int L4 = 0x000014DF; // L4:12/11
static boolean checkVar(byte[] s, int[] n)
{
decode(s, n);
return !Nat256.gte(n, L);
}
static void decode(byte[] k, int[] n)
{
Codec.decode32(k, 0, n, 0, SIZE);
}
static void getOrderWnafVar(int width, byte[] ws)
{
Wnaf.getSignedVar(L, width, ws);
}
static void multiply128Var(int[] x, int[] y128, int[] z)
{
int[] tt = new int[12];
Nat256.mul128(x, y128, tt);
if ((int)y128[3] < 0)
{
Nat256.addTo(L, 0, tt, 4, 0);
Nat256.subFrom(x, 0, tt, 4, 0);
}
byte[] bytes = new byte[64];
Codec.encode32(tt, 0, 12, bytes, 0);
byte[] r = reduce(bytes);
decode(r, z);
}
static byte[] reduce(byte[] n)
{
long x00 = Codec.decode32(n, 0) & M32L; // x00:32/--
long x01 = (Codec.decode24(n, 4) << 4) & M32L; // x01:28/--
long x02 = Codec.decode32(n, 7) & M32L; // x02:32/--
long x03 = (Codec.decode24(n, 11) << 4) & M32L; // x03:28/--
long x04 = Codec.decode32(n, 14) & M32L; // x04:32/--
long x05 = (Codec.decode24(n, 18) << 4) & M32L; // x05:28/--
long x06 = Codec.decode32(n, 21) & M32L; // x06:32/--
long x07 = (Codec.decode24(n, 25) << 4) & M32L; // x07:28/--
long x08 = Codec.decode32(n, 28) & M32L; // x08:32/--
long x09 = (Codec.decode24(n, 32) << 4) & M32L; // x09:28/--
long x10 = Codec.decode32(n, 35) & M32L; // x10:32/--
long x11 = (Codec.decode24(n, 39) << 4) & M32L; // x11:28/--
long x12 = Codec.decode32(n, 42) & M32L; // x12:32/--
long x13 = (Codec.decode24(n, 46) << 4) & M32L; // x13:28/--
long x14 = Codec.decode32(n, 49) & M32L; // x14:32/--
long x15 = (Codec.decode24(n, 53) << 4) & M32L; // x15:28/--
long x16 = Codec.decode32(n, 56) & M32L; // x16:32/--
long x17 = (Codec.decode24(n, 60) << 4) & M32L; // x17:28/--
long x18 = n[63] & M08L; // x18:08/--
long t;
// x18 += (x17 >> 28); x17 &= M28L;
x09 -= x18 * L0; // x09:34/28
x10 -= x18 * L1; // x10:33/30
x11 -= x18 * L2; // x11:35/28
x12 -= x18 * L3; // x12:32/31
x13 -= x18 * L4; // x13:28/21
x17 += (x16 >> 28); x16 &= M28L; // x17:28/--, x16:28/--
x08 -= x17 * L0; // x08:54/32
x09 -= x17 * L1; // x09:52/51
x10 -= x17 * L2; // x10:55/34
x11 -= x17 * L3; // x11:51/36
x12 -= x17 * L4; // x12:41/--
// x16 += (x15 >> 28); x15 &= M28L;
x07 -= x16 * L0; // x07:54/28
x08 -= x16 * L1; // x08:54/53
x09 -= x16 * L2; // x09:55/53
x10 -= x16 * L3; // x10:55/52
x11 -= x16 * L4; // x11:51/41
x15 += (x14 >> 28); x14 &= M28L; // x15:28/--, x14:28/--
x06 -= x15 * L0; // x06:54/32
x07 -= x15 * L1; // x07:54/53
x08 -= x15 * L2; // x08:56/--
x09 -= x15 * L3; // x09:55/54
x10 -= x15 * L4; // x10:55/53
// x14 += (x13 >> 28); x13 &= M28L;
x05 -= x14 * L0; // x05:54/28
x06 -= x14 * L1; // x06:54/53
x07 -= x14 * L2; // x07:56/--
x08 -= x14 * L3; // x08:56/51
x09 -= x14 * L4; // x09:56/--
x13 += (x12 >> 28); x12 &= M28L; // x13:28/22, x12:28/--
x04 -= x13 * L0; // x04:54/49
x05 -= x13 * L1; // x05:54/53
x06 -= x13 * L2; // x06:56/--
x07 -= x13 * L3; // x07:56/52
x08 -= x13 * L4; // x08:56/52
x12 += (x11 >> 28); x11 &= M28L; // x12:28/24, x11:28/--
x03 -= x12 * L0; // x03:54/49
x04 -= x12 * L1; // x04:54/51
x05 -= x12 * L2; // x05:56/--
x06 -= x12 * L3; // x06:56/52
x07 -= x12 * L4; // x07:56/53
x11 += (x10 >> 28); x10 &= M28L; // x11:29/--, x10:28/--
x02 -= x11 * L0; // x02:55/32
x03 -= x11 * L1; // x03:55/--
x04 -= x11 * L2; // x04:56/55
x05 -= x11 * L3; // x05:56/52
x06 -= x11 * L4; // x06:56/53
x10 += (x09 >> 28); x09 &= M28L; // x10:29/--, x09:28/--
x01 -= x10 * L0; // x01:55/28
x02 -= x10 * L1; // x02:55/54
x03 -= x10 * L2; // x03:56/55
x04 -= x10 * L3; // x04:57/--
x05 -= x10 * L4; // x05:56/53
x08 += (x07 >> 28); x07 &= M28L; // x08:56/53, x07:28/--
x09 += (x08 >> 28); x08 &= M28L; // x09:29/25, x08:28/--
t = x08 >>> 27;
x09 += t; // x09:29/26
x00 -= x09 * L0; // x00:55/53
x01 -= x09 * L1; // x01:55/54
x02 -= x09 * L2; // x02:57/--
x03 -= x09 * L3; // x03:57/--
x04 -= x09 * L4; // x04:57/42
x01 += (x00 >> 28); x00 &= M28L;
x02 += (x01 >> 28); x01 &= M28L;
x03 += (x02 >> 28); x02 &= M28L;
x04 += (x03 >> 28); x03 &= M28L;
x05 += (x04 >> 28); x04 &= M28L;
x06 += (x05 >> 28); x05 &= M28L;
x07 += (x06 >> 28); x06 &= M28L;
x08 += (x07 >> 28); x07 &= M28L;
x09 = (x08 >> 28); x08 &= M28L;
x09 -= t;
// assert x09 == 0L || x09 == -1L;
x00 += x09 & L0;
x01 += x09 & L1;
x02 += x09 & L2;
x03 += x09 & L3;
x04 += x09 & L4;
x01 += (x00 >> 28); x00 &= M28L;
x02 += (x01 >> 28); x01 &= M28L;
x03 += (x02 >> 28); x02 &= M28L;
x04 += (x03 >> 28); x03 &= M28L;
x05 += (x04 >> 28); x04 &= M28L;
x06 += (x05 >> 28); x05 &= M28L;
x07 += (x06 >> 28); x06 &= M28L;
x08 += (x07 >> 28); x07 &= M28L;
byte[] r = new byte[64];
Codec.encode56(x00 | (x01 << 28), r, 0);
Codec.encode56(x02 | (x03 << 28), r, 7);
Codec.encode56(x04 | (x05 << 28), r, 14);
Codec.encode56(x06 | (x07 << 28), r, 21);
Codec.encode32((int)x08, r, 28);
return r;
}
static void reduceBasisVar(int[] k, int[] z0, int[] z1)
{
/*
* Split scalar k into two half-size scalars z0 and z1, such that z1 * k == z0 mod L.
*
* See https://ia.cr/2020/454 (Pornin).
*/
int[] Nu = new int[16]; System.arraycopy(LSq, 0, Nu, 0, 16);
int[] Nv = new int[16]; Nat256.square(k, Nv); ++Nv[0];
int[] p = new int[16]; Nat256.mul(L, k, p);
int[] u0 = new int[4]; System.arraycopy(L, 0, u0, 0, 4);
int[] u1 = new int[4];
int[] v0 = new int[4]; System.arraycopy(k, 0, v0, 0, 4);
int[] v1 = new int[4]; v1[0] = 1;
int last = 15;
int len_Nv = ScalarUtil.getBitLengthPositive(last, Nv);
while (len_Nv > TARGET_LENGTH)
{
int len_p = ScalarUtil.getBitLength(last, p);
int s = len_p - len_Nv;
s &= ~(s >> 31);
if (p[last] < 0)
{
ScalarUtil.addShifted_NP(last, s, Nu, Nv, p);
ScalarUtil.addShifted_UV(3, s, u0, u1, v0, v1);
}
else
{
ScalarUtil.subShifted_NP(last, s, Nu, Nv, p);
ScalarUtil.subShifted_UV(3, s, u0, u1, v0, v1);
}
if (ScalarUtil.lessThan(last, Nu, Nv))
{
int[] t0 = u0; u0 = v0; v0 = t0;
int[] t1 = u1; u1 = v1; v1 = t1;
int[] tN = Nu; Nu = Nv; Nv = tN;
last = len_Nv >>> 5;
len_Nv = ScalarUtil.getBitLengthPositive(last, Nv);
}
}
// v1 * k == v0 mod L
System.arraycopy(v0, 0, z0, 0, 4);
System.arraycopy(v1, 0, z1, 0, 4);
}
static void toSignedDigits(int bits, int[] x, int[] z)
{
// assert bits == 256;
// assert z.length >= SIZE;
// int c1 =
Nat.cadd(SIZE, ~x[0] & 1, x, L, z); //assert c1 == 0;
// int c2 =
Nat.shiftDownBit(SIZE, z, 1); //assert c2 == (1 << 31);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy