All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.macs.ISO9797Alg3Mac Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.7. Note: this package includes the IDEA and NTRU encryption algorithms.

There is a newer version: 1.70
Show newest version
package org.bouncycastle.crypto.macs;

import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.Mac;
import org.bouncycastle.crypto.engines.DESEngine;
import org.bouncycastle.crypto.modes.CBCBlockCipher;
import org.bouncycastle.crypto.paddings.BlockCipherPadding;
import org.bouncycastle.crypto.params.KeyParameter;
import org.bouncycastle.crypto.params.ParametersWithIV;

/**
 * DES based CBC Block Cipher MAC according to ISO9797, algorithm 3 (ANSI X9.19 Retail MAC)
 *
 * This could as well be derived from CBCBlockCipherMac, but then the property mac in the base
 * class must be changed to protected  
 */

public class ISO9797Alg3Mac 
    implements Mac 
{
    private byte[]              mac;
    
    private byte[]              buf;
    private int                 bufOff;
    private BlockCipher         cipher;
    private BlockCipherPadding  padding;
    
    private int                 macSize;
    private KeyParameter        lastKey2;
    private KeyParameter        lastKey3;
    
    /**
     * create a Retail-MAC based on a CBC block cipher. This will produce an
     * authentication code of the length of the block size of the cipher.
     *
     * @param cipher the cipher to be used as the basis of the MAC generation. This must
     * be DESEngine.
     */
    public ISO9797Alg3Mac(
            BlockCipher     cipher)
    {
        this(cipher, cipher.getBlockSize() * 8, null);
    }
    
    /**
     * create a Retail-MAC based on a CBC block cipher. This will produce an
     * authentication code of the length of the block size of the cipher.
     *
     * @param cipher the cipher to be used as the basis of the MAC generation.
     * @param padding the padding to be used to complete the last block.
     */
    public ISO9797Alg3Mac(
        BlockCipher         cipher,
        BlockCipherPadding  padding)
    {
        this(cipher, cipher.getBlockSize() * 8, padding);
    }

    /**
     * create a Retail-MAC based on a block cipher with the size of the
     * MAC been given in bits. This class uses single DES CBC mode as the basis for the
     * MAC generation.
     * 

* Note: the size of the MAC must be at least 24 bits (FIPS Publication 81), * or 16 bits if being used as a data authenticator (FIPS Publication 113), * and in general should be less than the size of the block cipher as it reduces * the chance of an exhaustive attack (see Handbook of Applied Cryptography). * * @param cipher the cipher to be used as the basis of the MAC generation. * @param macSizeInBits the size of the MAC in bits, must be a multiple of 8. */ public ISO9797Alg3Mac( BlockCipher cipher, int macSizeInBits) { this(cipher, macSizeInBits, null); } /** * create a standard MAC based on a block cipher with the size of the * MAC been given in bits. This class uses single DES CBC mode as the basis for the * MAC generation. The final block is decrypted and then encrypted using the * middle and right part of the key. *

* Note: the size of the MAC must be at least 24 bits (FIPS Publication 81), * or 16 bits if being used as a data authenticator (FIPS Publication 113), * and in general should be less than the size of the block cipher as it reduces * the chance of an exhaustive attack (see Handbook of Applied Cryptography). * * @param cipher the cipher to be used as the basis of the MAC generation. * @param macSizeInBits the size of the MAC in bits, must be a multiple of 8. * @param padding the padding to be used to complete the last block. */ public ISO9797Alg3Mac( BlockCipher cipher, int macSizeInBits, BlockCipherPadding padding) { if ((macSizeInBits % 8) != 0) { throw new IllegalArgumentException("MAC size must be multiple of 8"); } if (!(cipher instanceof DESEngine)) { throw new IllegalArgumentException("cipher must be instance of DESEngine"); } this.cipher = new CBCBlockCipher(cipher); this.padding = padding; this.macSize = macSizeInBits / 8; mac = new byte[cipher.getBlockSize()]; buf = new byte[cipher.getBlockSize()]; bufOff = 0; } public String getAlgorithmName() { return "ISO9797Alg3"; } public void init(CipherParameters params) { reset(); if (!(params instanceof KeyParameter || params instanceof ParametersWithIV)) { throw new IllegalArgumentException( "params must be an instance of KeyParameter or ParametersWithIV"); } // KeyParameter must contain a double or triple length DES key, // however the underlying cipher is a single DES. The middle and // right key are used only in the final step. KeyParameter kp; if (params instanceof KeyParameter) { kp = (KeyParameter)params; } else { kp = (KeyParameter)((ParametersWithIV)params).getParameters(); } KeyParameter key1; byte[] keyvalue = kp.getKey(); if (keyvalue.length == 16) { // Double length DES key key1 = new KeyParameter(keyvalue, 0, 8); this.lastKey2 = new KeyParameter(keyvalue, 8, 8); this.lastKey3 = key1; } else if (keyvalue.length == 24) { // Triple length DES key key1 = new KeyParameter(keyvalue, 0, 8); this.lastKey2 = new KeyParameter(keyvalue, 8, 8); this.lastKey3 = new KeyParameter(keyvalue, 16, 8); } else { throw new IllegalArgumentException( "Key must be either 112 or 168 bit long"); } if (params instanceof ParametersWithIV) { cipher.init(true, new ParametersWithIV(key1, ((ParametersWithIV)params).getIV())); } else { cipher.init(true, key1); } } public int getMacSize() { return macSize; } public void update( byte in) { if (bufOff == buf.length) { cipher.processBlock(buf, 0, mac, 0); bufOff = 0; } buf[bufOff++] = in; } public void update( byte[] in, int inOff, int len) { if (len < 0) { throw new IllegalArgumentException("Can't have a negative input length!"); } int blockSize = cipher.getBlockSize(); int resultLen = 0; int gapLen = blockSize - bufOff; if (len > gapLen) { System.arraycopy(in, inOff, buf, bufOff, gapLen); resultLen += cipher.processBlock(buf, 0, mac, 0); bufOff = 0; len -= gapLen; inOff += gapLen; while (len > blockSize) { resultLen += cipher.processBlock(in, inOff, mac, 0); len -= blockSize; inOff += blockSize; } } System.arraycopy(in, inOff, buf, bufOff, len); bufOff += len; } public int doFinal( byte[] out, int outOff) { int blockSize = cipher.getBlockSize(); if (padding == null) { // // pad with zeroes // while (bufOff < blockSize) { buf[bufOff] = 0; bufOff++; } } else { if (bufOff == blockSize) { cipher.processBlock(buf, 0, mac, 0); bufOff = 0; } padding.addPadding(buf, bufOff); } cipher.processBlock(buf, 0, mac, 0); // Added to code from base class DESEngine deseng = new DESEngine(); deseng.init(false, this.lastKey2); deseng.processBlock(mac, 0, mac, 0); deseng.init(true, this.lastKey3); deseng.processBlock(mac, 0, mac, 0); // **** System.arraycopy(mac, 0, out, outOff, macSize); reset(); return macSize; } /** * Reset the mac generator. */ public void reset() { /* * clean the buffer. */ for (int i = 0; i < buf.length; i++) { buf[i] = 0; } bufOff = 0; /* * reset the underlying cipher. */ cipher.reset(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy