org.bouncycastle.pqc.math.linearalgebra.GF2nField Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-jdk15on Show documentation
Show all versions of bcprov-ext-jdk15on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.7. Note: this package includes the IDEA and NTRU encryption algorithms.
package org.bouncycastle.pqc.math.linearalgebra;
import java.security.SecureRandom;
import java.util.Vector;
/**
* This abstract class defines the finite field GF(2n). It
* holds the extension degree n, the characteristic, the irreducible
* fieldpolynomial and conversion matrices. GF2nField is implemented by the
* classes GF2nPolynomialField and GF2nONBField.
*
* @see GF2nONBField
* @see GF2nPolynomialField
*/
public abstract class GF2nField
{
protected final SecureRandom random;
/**
* the degree of this field
*/
protected int mDegree;
/**
* the irreducible fieldPolynomial stored in normal order (also for ONB)
*/
protected GF2Polynomial fieldPolynomial;
/**
* holds a list of GF2nFields to which elements have been converted and thus
* a COB-Matrix exists
*/
protected Vector fields;
/**
* the COB matrices
*/
protected Vector matrices;
protected GF2nField(SecureRandom random)
{
this.random = random;
}
/**
* Returns the degree n of this field.
*
* @return the degree n of this field
*/
public final int getDegree()
{
return mDegree;
}
/**
* Returns the fieldpolynomial as a new Bitstring.
*
* @return a copy of the fieldpolynomial as a new Bitstring
*/
public final GF2Polynomial getFieldPolynomial()
{
if (fieldPolynomial == null)
{
computeFieldPolynomial();
}
return new GF2Polynomial(fieldPolynomial);
}
/**
* Decides whether the given object other is the same as this
* field.
*
* @param other another object
* @return (this == other)
*/
public final boolean equals(Object other)
{
if (other == null || !(other instanceof GF2nField))
{
return false;
}
GF2nField otherField = (GF2nField)other;
if (otherField.mDegree != mDegree)
{
return false;
}
if (!fieldPolynomial.equals(otherField.fieldPolynomial))
{
return false;
}
if ((this instanceof GF2nPolynomialField)
&& !(otherField instanceof GF2nPolynomialField))
{
return false;
}
if ((this instanceof GF2nONBField)
&& !(otherField instanceof GF2nONBField))
{
return false;
}
return true;
}
/**
* @return the hash code of this field
*/
public int hashCode()
{
return mDegree + fieldPolynomial.hashCode();
}
/**
* Computes a random root from the given irreducible fieldpolynomial
* according to IEEE 1363 algorithm A.5.6. This cal take very long for big
* degrees.
*
* @param B0FieldPolynomial the fieldpolynomial if the other basis as a Bitstring
* @return a random root of BOFieldPolynomial in representation according to
* this field
* @see "P1363 A.5.6, p103f"
*/
protected abstract GF2nElement getRandomRoot(GF2Polynomial B0FieldPolynomial);
/**
* Computes the change-of-basis matrix for basis conversion according to
* 1363. The result is stored in the lists fields and matrices.
*
* @param B1 the GF2nField to convert to
* @see "P1363 A.7.3, p111ff"
*/
protected abstract void computeCOBMatrix(GF2nField B1);
/**
* Computes the fieldpolynomial. This can take a long time for big degrees.
*/
protected abstract void computeFieldPolynomial();
/**
* Inverts the given matrix represented as bitstrings.
*
* @param matrix the matrix to invert as a Bitstring[]
* @return matrix^(-1)
*/
protected final GF2Polynomial[] invertMatrix(GF2Polynomial[] matrix)
{
GF2Polynomial[] a = new GF2Polynomial[matrix.length];
GF2Polynomial[] inv = new GF2Polynomial[matrix.length];
GF2Polynomial dummy;
int i, j;
// initialize a as a copy of matrix and inv as E(inheitsmatrix)
for (i = 0; i < mDegree; i++)
{
try
{
a[i] = new GF2Polynomial(matrix[i]);
inv[i] = new GF2Polynomial(mDegree);
inv[i].setBit(mDegree - 1 - i);
}
catch (RuntimeException BDNEExc)
{
BDNEExc.printStackTrace();
}
}
// construct triangle matrix so that for each a[i] the first i bits are
// zero
for (i = 0; i < mDegree - 1; i++)
{
// find column where bit i is set
j = i;
while ((j < mDegree) && !a[j].testBit(mDegree - 1 - i))
{
j++;
}
if (j >= mDegree)
{
throw new RuntimeException(
"GF2nField.invertMatrix: Matrix cannot be inverted!");
}
if (i != j)
{ // swap a[i]/a[j] and inv[i]/inv[j]
dummy = a[i];
a[i] = a[j];
a[j] = dummy;
dummy = inv[i];
inv[i] = inv[j];
inv[j] = dummy;
}
for (j = i + 1; j < mDegree; j++)
{ // add column i to all columns>i
// having their i-th bit set
if (a[j].testBit(mDegree - 1 - i))
{
a[j].addToThis(a[i]);
inv[j].addToThis(inv[i]);
}
}
}
// construct Einheitsmatrix from a
for (i = mDegree - 1; i > 0; i--)
{
for (j = i - 1; j >= 0; j--)
{ // eliminate the i-th bit in all
// columns < i
if (a[j].testBit(mDegree - 1 - i))
{
a[j].addToThis(a[i]);
inv[j].addToThis(inv[i]);
}
}
}
return inv;
}
/**
* Converts the given element in representation according to this field to a
* new element in representation according to B1 using the change-of-basis
* matrix calculated by computeCOBMatrix.
*
* @param elem the GF2nElement to convert
* @param basis the basis to convert elem to
* @return elem converted to a new element representation
* according to basis
* @throws DifferentFieldsException if elem cannot be converted according to
* basis.
* @see GF2nField#computeCOBMatrix
* @see GF2nField#getRandomRoot
* @see GF2nPolynomial
* @see "P1363 A.7 p109ff"
*/
public final GF2nElement convert(GF2nElement elem, GF2nField basis)
throws RuntimeException
{
if (basis == this)
{
return (GF2nElement)elem.clone();
}
if (fieldPolynomial.equals(basis.fieldPolynomial))
{
return (GF2nElement)elem.clone();
}
if (mDegree != basis.mDegree)
{
throw new RuntimeException("GF2nField.convert: B1 has a"
+ " different degree and thus cannot be coverted to!");
}
int i;
GF2Polynomial[] COBMatrix;
i = fields.indexOf(basis);
if (i == -1)
{
computeCOBMatrix(basis);
i = fields.indexOf(basis);
}
COBMatrix = (GF2Polynomial[])matrices.elementAt(i);
GF2nElement elemCopy = (GF2nElement)elem.clone();
if (elemCopy instanceof GF2nONBElement)
{
// remember: ONB treats its bits in reverse order
((GF2nONBElement)elemCopy).reverseOrder();
}
GF2Polynomial bs = new GF2Polynomial(mDegree, elemCopy.toFlexiBigInt());
bs.expandN(mDegree);
GF2Polynomial result = new GF2Polynomial(mDegree);
for (i = 0; i < mDegree; i++)
{
if (bs.vectorMult(COBMatrix[i]))
{
result.setBit(mDegree - 1 - i);
}
}
if (basis instanceof GF2nPolynomialField)
{
return new GF2nPolynomialElement((GF2nPolynomialField)basis,
result);
}
else if (basis instanceof GF2nONBField)
{
GF2nONBElement res = new GF2nONBElement((GF2nONBField)basis,
result.toFlexiBigInt());
// TODO Remember: ONB treats its Bits in reverse order !!!
res.reverseOrder();
return res;
}
else
{
throw new RuntimeException(
"GF2nField.convert: B1 must be an instance of "
+ "GF2nPolynomialField or GF2nONBField!");
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy