org.bouncycastle.pqc.crypto.ntru.NTRUSigningKeyPairGenerator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-jdk15on Show documentation
Show all versions of bcprov-ext-jdk15on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8. Note: this package includes the NTRU encryption algorithms.
package org.bouncycastle.pqc.crypto.ntru;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
import org.bouncycastle.crypto.AsymmetricCipherKeyPairGenerator;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.KeyGenerationParameters;
import org.bouncycastle.pqc.math.ntru.euclid.BigIntEuclidean;
import org.bouncycastle.pqc.math.ntru.polynomial.BigDecimalPolynomial;
import org.bouncycastle.pqc.math.ntru.polynomial.BigIntPolynomial;
import org.bouncycastle.pqc.math.ntru.polynomial.DenseTernaryPolynomial;
import org.bouncycastle.pqc.math.ntru.polynomial.IntegerPolynomial;
import org.bouncycastle.pqc.math.ntru.polynomial.Polynomial;
import org.bouncycastle.pqc.math.ntru.polynomial.ProductFormPolynomial;
import org.bouncycastle.pqc.math.ntru.polynomial.Resultant;
import static java.math.BigInteger.ONE;
import static java.math.BigInteger.ZERO;
public class NTRUSigningKeyPairGenerator
implements AsymmetricCipherKeyPairGenerator
{
private NTRUSigningKeyGenerationParameters params;
public void init(KeyGenerationParameters param)
{
this.params = (NTRUSigningKeyGenerationParameters)param;
}
/**
* Generates a new signature key pair. Starts B+1
threads.
*
* @return a key pair
*/
public AsymmetricCipherKeyPair generateKeyPair()
{
NTRUSigningPublicKeyParameters pub = null;
ExecutorService executor = Executors.newCachedThreadPool();
List> bases = new ArrayList>();
for (int k = params.B; k >= 0; k--)
{
bases.add(executor.submit(new BasisGenerationTask()));
}
executor.shutdown();
List basises = new ArrayList();
for (int k = params.B; k >= 0; k--)
{
Future basis = bases.get(k);
try
{
basises.add(basis.get());
if (k == params.B)
{
pub = new NTRUSigningPublicKeyParameters(basis.get().h, params.getSigningParameters());
}
}
catch (Exception e)
{
throw new IllegalStateException(e);
}
}
NTRUSigningPrivateKeyParameters priv = new NTRUSigningPrivateKeyParameters(basises, pub);
AsymmetricCipherKeyPair kp = new AsymmetricCipherKeyPair(pub, priv);
return kp;
}
/**
* Generates a new signature key pair. Runs in a single thread.
*
* @return a key pair
*/
public AsymmetricCipherKeyPair generateKeyPairSingleThread()
{
List basises = new ArrayList();
NTRUSigningPublicKeyParameters pub = null;
for (int k = params.B; k >= 0; k--)
{
NTRUSigningPrivateKeyParameters.Basis basis = generateBoundedBasis();
basises.add(basis);
if (k == 0)
{
pub = new NTRUSigningPublicKeyParameters(basis.h, params.getSigningParameters());
}
}
NTRUSigningPrivateKeyParameters priv = new NTRUSigningPrivateKeyParameters(basises, pub);
return new AsymmetricCipherKeyPair(pub, priv);
}
/*
* Implementation of the optional steps 20 through 26 in EESS1v2.pdf, section 3.5.1.1.
* This doesn't seem to have much of an effect and sometimes actually increases the
* norm of F, but on average it slightly reduces the norm.
* This method changes F
and g
but leaves f
and
* g
unchanged.
*/
private void minimizeFG(IntegerPolynomial f, IntegerPolynomial g, IntegerPolynomial F, IntegerPolynomial G, int N)
{
int E = 0;
for (int j = 0; j < N; j++)
{
E += 2 * N * (f.coeffs[j] * f.coeffs[j] + g.coeffs[j] * g.coeffs[j]);
}
// [f(1)+g(1)]^2 = 4
E -= 4;
IntegerPolynomial u = (IntegerPolynomial)f.clone();
IntegerPolynomial v = (IntegerPolynomial)g.clone();
int j = 0;
int k = 0;
int maxAdjustment = N;
while (k < maxAdjustment && j < N)
{
int D = 0;
int i = 0;
while (i < N)
{
int D1 = F.coeffs[i] * f.coeffs[i];
int D2 = G.coeffs[i] * g.coeffs[i];
int D3 = 4 * N * (D1 + D2);
D += D3;
i++;
}
// f(1)+g(1) = 2
int D1 = 4 * (F.sumCoeffs() + G.sumCoeffs());
D -= D1;
if (D > E)
{
F.sub(u);
G.sub(v);
k++;
j = 0;
}
else if (D < -E)
{
F.add(u);
G.add(v);
k++;
j = 0;
}
j++;
u.rotate1();
v.rotate1();
}
}
/**
* Creates a NTRUSigner basis consisting of polynomials f, g, F, G, h
.
* If KeyGenAlg=FLOAT
, the basis may not be valid and this method must be rerun if that is the case.
*
* @see #generateBoundedBasis()
*/
private FGBasis generateBasis()
{
int N = params.N;
int q = params.q;
int d = params.d;
int d1 = params.d1;
int d2 = params.d2;
int d3 = params.d3;
int basisType = params.basisType;
Polynomial f;
IntegerPolynomial fInt;
Polynomial g;
IntegerPolynomial gInt;
IntegerPolynomial fq;
Resultant rf;
Resultant rg;
BigIntEuclidean r;
int _2n1 = 2 * N + 1;
boolean primeCheck = params.primeCheck;
do
{
do
{
f = params.polyType== NTRUParameters.TERNARY_POLYNOMIAL_TYPE_SIMPLE ? DenseTernaryPolynomial.generateRandom(N, d + 1, d, CryptoServicesRegistrar.getSecureRandom()) : ProductFormPolynomial.generateRandom(N, d1, d2, d3 + 1, d3, CryptoServicesRegistrar.getSecureRandom());
fInt = f.toIntegerPolynomial();
}
while (primeCheck && fInt.resultant(_2n1).res.equals(ZERO));
fq = fInt.invertFq(q);
}
while (fq == null);
rf = fInt.resultant();
do
{
do
{
do
{
g = params.polyType == NTRUParameters.TERNARY_POLYNOMIAL_TYPE_SIMPLE ? DenseTernaryPolynomial.generateRandom(N, d + 1, d, CryptoServicesRegistrar.getSecureRandom()) : ProductFormPolynomial.generateRandom(N, d1, d2, d3 + 1, d3, CryptoServicesRegistrar.getSecureRandom());
gInt = g.toIntegerPolynomial();
}
while (primeCheck && gInt.resultant(_2n1).res.equals(ZERO));
}
while (gInt.invertFq(q) == null);
rg = gInt.resultant();
r = BigIntEuclidean.calculate(rf.res, rg.res);
}
while (!r.gcd.equals(ONE));
BigIntPolynomial A = (BigIntPolynomial)rf.rho.clone();
A.mult(r.x.multiply(BigInteger.valueOf(q)));
BigIntPolynomial B = (BigIntPolynomial)rg.rho.clone();
B.mult(r.y.multiply(BigInteger.valueOf(-q)));
BigIntPolynomial C;
if (params.keyGenAlg == NTRUSigningKeyGenerationParameters.KEY_GEN_ALG_RESULTANT)
{
int[] fRevCoeffs = new int[N];
int[] gRevCoeffs = new int[N];
fRevCoeffs[0] = fInt.coeffs[0];
gRevCoeffs[0] = gInt.coeffs[0];
for (int i = 1; i < N; i++)
{
fRevCoeffs[i] = fInt.coeffs[N - i];
gRevCoeffs[i] = gInt.coeffs[N - i];
}
IntegerPolynomial fRev = new IntegerPolynomial(fRevCoeffs);
IntegerPolynomial gRev = new IntegerPolynomial(gRevCoeffs);
IntegerPolynomial t = f.mult(fRev);
t.add(g.mult(gRev));
Resultant rt = t.resultant();
C = fRev.mult(B); // fRev.mult(B) is actually faster than new SparseTernaryPolynomial(fRev).mult(B), possibly due to cache locality?
C.add(gRev.mult(A));
C = C.mult(rt.rho);
C.div(rt.res);
}
else
{ // KeyGenAlg.FLOAT
// calculate ceil(log10(N))
int log10N = 0;
for (int i = 1; i < N; i *= 10)
{
log10N++;
}
// * Cdec needs to be accurate to 1 decimal place so it can be correctly rounded;
// * fInv loses up to (#digits of longest coeff of B) places in fInv.mult(B);
// * multiplying fInv by B also multiplies the rounding error by a factor of N;
// so make #decimal places of fInv the sum of the above.
BigDecimalPolynomial fInv = rf.rho.div(new BigDecimal(rf.res), B.getMaxCoeffLength() + 1 + log10N);
BigDecimalPolynomial gInv = rg.rho.div(new BigDecimal(rg.res), A.getMaxCoeffLength() + 1 + log10N);
BigDecimalPolynomial Cdec = fInv.mult(B);
Cdec.add(gInv.mult(A));
Cdec.halve();
C = Cdec.round();
}
BigIntPolynomial F = (BigIntPolynomial)B.clone();
F.sub(f.mult(C));
BigIntPolynomial G = (BigIntPolynomial)A.clone();
G.sub(g.mult(C));
IntegerPolynomial FInt = new IntegerPolynomial(F);
IntegerPolynomial GInt = new IntegerPolynomial(G);
minimizeFG(fInt, gInt, FInt, GInt, N);
Polynomial fPrime;
IntegerPolynomial h;
if (basisType == NTRUSigningKeyGenerationParameters.BASIS_TYPE_STANDARD)
{
fPrime = FInt;
h = g.mult(fq, q);
}
else
{
fPrime = g;
h = FInt.mult(fq, q);
}
h.modPositive(q);
return new FGBasis(f, fPrime, h, FInt, GInt, params);
}
/**
* Creates a basis such that |F| < keyNormBound
and |G| < keyNormBound
*
* @return a NTRUSigner basis
*/
public NTRUSigningPrivateKeyParameters.Basis generateBoundedBasis()
{
while (true)
{
FGBasis basis = generateBasis();
if (basis.isNormOk())
{
return basis;
}
}
}
private class BasisGenerationTask
implements Callable
{
public NTRUSigningPrivateKeyParameters.Basis call()
throws Exception
{
return generateBoundedBasis();
}
}
/**
* A subclass of Basis that additionally contains the polynomials F
and G
.
*/
public class FGBasis
extends NTRUSigningPrivateKeyParameters.Basis
{
public IntegerPolynomial F;
public IntegerPolynomial G;
FGBasis(Polynomial f, Polynomial fPrime, IntegerPolynomial h, IntegerPolynomial F, IntegerPolynomial G, NTRUSigningKeyGenerationParameters params)
{
super(f, fPrime, h, params);
this.F = F;
this.G = G;
}
/*
* Returns true
if the norms of the polynomials F
and G
* are within {@link NTRUSigningKeyGenerationParameters#keyNormBound}.
*/
boolean isNormOk()
{
double keyNormBoundSq = params.keyNormBoundSq;
int q = params.q;
return (F.centeredNormSq(q) < keyNormBoundSq && G.centeredNormSq(q) < keyNormBoundSq);
}
}
}