org.bouncycastle.crypto.modes.kgcm.KGCMUtil_128 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-jdk15on Show documentation
Show all versions of bcprov-ext-jdk15on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8. Note: this package includes the NTRU encryption algorithms.
The newest version!
package org.bouncycastle.crypto.modes.kgcm;
import org.bouncycastle.math.raw.Interleave;
/**
* Utilities for the GF(2^m) field with corresponding extension polynomial:
*
* GF (2^128) -> x^128 + x^7 + x^2 + x + 1
*
* The representation is little-endian arrays of 64-bit words
*/
public class KGCMUtil_128
{
public static final int SIZE = 2;
public static void add(long[] x, long[] y, long[] z)
{
z[0] = x[0] ^ y[0];
z[1] = x[1] ^ y[1];
}
public static void copy(long[] x, long[] z)
{
z[0] = x[0];
z[1] = x[1];
}
public static boolean equal(long[] x, long[] y)
{
long d = 0L;
d |= x[0] ^ y[0];
d |= x[1] ^ y[1];
return d == 0L;
}
public static void multiply(long[] x, long[] y, long[] z)
{
long x0 = x[0], x1 = x[1];
long y0 = y[0], y1 = y[1];
long z0 = 0, z1 = 0, z2 = 0;
for (int j = 0; j < 64; ++j)
{
long m0 = -(x0 & 1L); x0 >>>= 1;
z0 ^= (y0 & m0);
z1 ^= (y1 & m0);
long m1 = -(x1 & 1L); x1 >>>= 1;
z1 ^= (y0 & m1);
z2 ^= (y1 & m1);
long c = y1 >> 63;
y1 = (y1 << 1) | (y0 >>> 63);
y0 = (y0 << 1) ^ (c & 0x87L);
}
z0 ^= z2 ^ (z2 << 1) ^ (z2 << 2) ^ (z2 << 7);
z1 ^= (z2 >>> 63) ^ (z2 >>> 62) ^ (z2 >>> 57);
z[0] = z0; z[1] = z1;
}
public static void multiplyX(long[] x, long[] z)
{
long x0 = x[0], x1 = x[1];
long m = x1 >> 63;
z[0] = (x0 << 1) ^ (m & 0x87L);
z[1] = (x1 << 1) | (x0 >>> 63);
}
public static void multiplyX8(long[] x, long[] z)
{
long x0 = x[0], x1 = x[1];
long c = x1 >>> 56;
z[0] = (x0 << 8) ^ c ^ (c << 1) ^ (c << 2) ^ (c << 7);
z[1] = (x1 << 8) | (x0 >>> 56);
}
public static void one(long[] z)
{
z[0] = 1;
z[1] = 0;
}
public static void square(long[] x, long[] z)
{
long[] t = new long[4];
Interleave.expand64To128(x[0], t, 0);
Interleave.expand64To128(x[1], t, 2);
long z0 = t[0], z1 = t[1], z2 = t[2], z3 = t[3];
z1 ^= z3 ^ (z3 << 1) ^ (z3 << 2) ^ (z3 << 7);
z2 ^= (z3 >>> 63) ^ (z3 >>> 62) ^ (z3 >>> 57);
z0 ^= z2 ^ (z2 << 1) ^ (z2 << 2) ^ (z2 << 7);
z1 ^= (z2 >>> 63) ^ (z2 >>> 62) ^ (z2 >>> 57);
z[0] = z0;
z[1] = z1;
}
public static void x(long[] z)
{
z[0] = 2;
z[1] = 0;
}
public static void zero(long[] z)
{
z[0] = 0;
z[1] = 0;
}
}