org.bouncycastle.crypto.fpe.SP80038G Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-jdk15to18 Show documentation
Show all versions of bcprov-ext-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.8 and up. Note: this package includes the NTRU encryption algorithms.
package org.bouncycastle.crypto.fpe;
import java.math.BigInteger;
import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.util.RadixConverter;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.BigIntegers;
import org.bouncycastle.util.Bytes;
import org.bouncycastle.util.Integers;
import org.bouncycastle.util.Pack;
/*
* SP800-38G Format-Preserving Encryption
*
* TODOs
* - Initialize the cipher internally or externally?
* 1. Algs 7-10 don't appear to require forward vs. inverse transform, although sample data is forward.
* 2. Algs 9-10 specify reversal of the cipher key!
* - Separate construction/initialization stage for "prerequisites"
*/
class SP80038G
{
static final String FPE_DISABLED = "org.bouncycastle.fpe.disable";
static final String FF1_DISABLED = "org.bouncycastle.fpe.disable_ff1";
protected static final int BLOCK_SIZE = 16;
protected static final double LOG2 = Math.log(2.0);
protected static final double TWO_TO_96 = Math.pow(2, 96);
static byte[] decryptFF1(BlockCipher cipher, RadixConverter radixConverter, byte[] tweak, byte[] buf, int off, int len)
{
checkArgs(cipher, true, radixConverter.getRadix(), buf, off, len);
// Algorithm 8
int n = len;
int u = n / 2, v = n - u;
short[] A = toShort(buf, off, u);
short[] B = toShort(buf, off + u, v);
short[] rv = decFF1(cipher, radixConverter, tweak, n, u, v, A, B);
return toByte(rv);
}
static short[] decryptFF1w(BlockCipher cipher, RadixConverter radixConverter, byte[] tweak, short[] buf, int off, int len)
{
checkArgs(cipher, true, radixConverter.getRadix(), buf, off, len);
// Algorithm 8
int n = len;
int u = n / 2, v = n - u;
short[] A = new short[u];
short[] B = new short[v];
System.arraycopy(buf, off, A, 0, u);
System.arraycopy(buf, off + u, B, 0, v);
return decFF1(cipher, radixConverter, tweak, n, u, v, A, B);
}
static short[] decFF1(BlockCipher cipher, RadixConverter radixConverter, byte[] T, int n, int u, int v, short[] A, short[] B)
{
int radix = radixConverter.getRadix();
int t = T.length;
int b = calculateB_FF1(radix, v);
int d = (b + 7) & ~3;
byte[] P = calculateP_FF1(radix, (byte)u, n, t);
BigInteger bigRadix = BigInteger.valueOf(radix);
BigInteger[] modUV = calculateModUV(bigRadix, u, v);
int m = u;
for (int i = 9; i >= 0; --i)
{
// i. - iv.
BigInteger y = calculateY_FF1(cipher, T, b, d, i, P, A, radixConverter);
// v.
m = n - m;
BigInteger modulus = modUV[i & 1];
// vi.
BigInteger c = radixConverter.fromEncoding(B).subtract(y).mod(modulus);
// vii. - ix.
short[] C = B;
B = A;
A = C;
radixConverter.toEncoding(c, m, C);
}
return Arrays.concatenate(A, B);
}
static byte[] decryptFF3(BlockCipher cipher, RadixConverter radixConverter, byte[] tweak64, byte[] buf, int off, int len)
{
checkArgs(cipher, false, radixConverter.getRadix(), buf, off, len);
if (tweak64.length != 8)
{
throw new IllegalArgumentException();
}
return implDecryptFF3(cipher, radixConverter, tweak64, buf, off, len);
}
static byte[] decryptFF3_1(BlockCipher cipher, RadixConverter radixConverter, byte[] tweak56, byte[] buf, int off, int len)
{
checkArgs(cipher, false, radixConverter.getRadix(), buf, off, len);
if (tweak56.length != 7)
{
throw new IllegalArgumentException("tweak should be 56 bits");
}
byte[] tweak64 = calculateTweak64_FF3_1(tweak56);
return implDecryptFF3(cipher, radixConverter, tweak64, buf, off, len);
}
static short[] decryptFF3_1w(BlockCipher cipher, RadixConverter radixConverter, byte[] tweak56, short[] buf, int off, int len)
{
checkArgs(cipher, false, radixConverter.getRadix(), buf, off, len);
if (tweak56.length != 7)
{
throw new IllegalArgumentException("tweak should be 56 bits");
}
byte[] tweak64 = calculateTweak64_FF3_1(tweak56);
return implDecryptFF3w(cipher, radixConverter, tweak64, buf, off, len);
}
static byte[] encryptFF1(BlockCipher cipher, RadixConverter radixConverter, byte[] tweak, byte[] buf, int off, int len)
{
checkArgs(cipher, true, radixConverter.getRadix(), buf, off, len);
// Algorithm 7
int n = len;
int u = n / 2, v = n - u;
short[] A = toShort(buf, off, u);
short[] B = toShort(buf, off + u, v);
return toByte(encFF1(cipher, radixConverter, tweak, n, u, v, A, B));
}
static short[] encryptFF1w(BlockCipher cipher, RadixConverter radixConverter, byte[] tweak, short[] buf, int off, int len)
{
checkArgs(cipher, true, radixConverter.getRadix(), buf, off, len);
// Algorithm 7
int n = len;
int u = n / 2, v = n - u;
short[] A = new short[u];
short[] B = new short[v];
System.arraycopy(buf, off, A, 0, u);
System.arraycopy(buf, off + u, B, 0, v);
return encFF1(cipher, radixConverter, tweak, n, u, v, A, B);
}
private static short[] encFF1(BlockCipher cipher, RadixConverter radixConverter, byte[] T, int n, int u, int v, short[] A, short[] B)
{
int radix = radixConverter.getRadix();
int t = T.length;
int b = calculateB_FF1(radix, v);
int d = (b + 7) & ~3;
byte[] P = calculateP_FF1(radix, (byte)u, n, t);
BigInteger bigRadix = BigInteger.valueOf(radix);
BigInteger[] modUV = calculateModUV(bigRadix, u, v);
int m = v;
for (int i = 0; i < 10; ++i)
{
// i. - iv.
BigInteger y = calculateY_FF1(cipher, T, b, d, i, P, B, radixConverter);
// v.
m = n - m;
BigInteger modulus = modUV[i & 1];
// vi.
BigInteger num = radixConverter.fromEncoding(A);
BigInteger c = num.add(y).mod(modulus);
// vii. - ix.
short[] C = A;
A = B;
B = C;
radixConverter.toEncoding(c, m, C);
}
return Arrays.concatenate(A, B);
}
static byte[] encryptFF3(BlockCipher cipher, RadixConverter radixConverter, byte[] tweak64, byte[] buf, int off, int len)
{
checkArgs(cipher, false, radixConverter.getRadix(), buf, off, len);
if (tweak64.length != 8)
{
throw new IllegalArgumentException();
}
return implEncryptFF3(cipher, radixConverter, tweak64, buf, off, len);
}
static short[] encryptFF3w(BlockCipher cipher, RadixConverter radixConverter, byte[] tweak64, short[] buf, int off, int len)
{
checkArgs(cipher, false, radixConverter.getRadix(), buf, off, len);
if (tweak64.length != 8)
{
throw new IllegalArgumentException();
}
return implEncryptFF3w(cipher, radixConverter, tweak64, buf, off, len);
}
static short[] encryptFF3_1w(BlockCipher cipher, RadixConverter radixConverter, byte[] tweak56, short[] buf, int off, int len)
{
checkArgs(cipher, false, radixConverter.getRadix(), buf, off, len);
if (tweak56.length != 7)
{
throw new IllegalArgumentException("tweak should be 56 bits");
}
byte[] tweak64 = calculateTweak64_FF3_1(tweak56);
return encryptFF3w(cipher, radixConverter, tweak64, buf, off, len);
}
static byte[] encryptFF3_1(BlockCipher cipher, RadixConverter radixConverter, byte[] tweak56, byte[] buf, int off, int len)
{
checkArgs(cipher, false, radixConverter.getRadix(), buf, off, len);
if (tweak56.length != 7)
{
throw new IllegalArgumentException("tweak should be 56 bits");
}
byte[] tweak64 = calculateTweak64_FF3_1(tweak56);
return encryptFF3(cipher, radixConverter, tweak64, buf, off, len);
}
protected static int calculateB_FF1(int radix, int v)
{
// return (BigInteger.valueOf(radix).pow(v).subtract(BigInteger.ONE).bitLength() + 7) / 8;
int powersOfTwo = Integers.numberOfTrailingZeros(radix);
int bits = powersOfTwo * v;
int oddPart = radix >>> powersOfTwo;
if (oddPart != 1)
{
// Old version with rounding issues, especially for power of 2 radix, but maybe others.
// bits += (int)Math.ceil(Math.log((double)oddPart) * (double)v / LOG2);
// Exact calculation, with possible performance issues if v is too large.
bits += BigInteger.valueOf(oddPart).pow(v).bitLength();
}
return (bits + 7) / 8;
}
protected static BigInteger[] calculateModUV(BigInteger bigRadix, int u, int v)
{
BigInteger[] modUV = new BigInteger[2];
modUV[0] = bigRadix.pow(u);
modUV[1] = modUV[0];
if (v != u)
{
modUV[1] = modUV[1].multiply(bigRadix);
}
return modUV;
}
protected static byte[] calculateP_FF1(int radix, byte uLow, int n, int t)
{
byte[] P = new byte[BLOCK_SIZE];
P[0] = 1;
P[1] = 2;
P[2] = 1;
// Radix
P[3] = 0;
P[4] = (byte)(radix >> 8);
P[5] = (byte)radix;
P[6] = 10;
P[7] = uLow;
Pack.intToBigEndian(n, P, 8);
Pack.intToBigEndian(t, P, 12);
return P;
}
protected static byte[] calculateTweak64_FF3_1(byte[] tweak56)
{
byte[] tweak64 = new byte[8];
tweak64[0] = tweak56[0];
tweak64[1] = tweak56[1];
tweak64[2] = tweak56[2];
tweak64[3] = (byte)(tweak56[3] & 0xF0);
tweak64[4] = tweak56[4];
tweak64[5] = tweak56[5];
tweak64[6] = tweak56[6];
tweak64[7] = (byte)(tweak56[3] << 4);
return tweak64;
}
protected static BigInteger calculateY_FF1(BlockCipher cipher, byte[] T, int b, int d, int round, byte[] P, short[] AB,
RadixConverter radixConverter)
{
int t = T.length;
// i.
BigInteger numAB = radixConverter.fromEncoding(AB);
byte[] bytesAB = BigIntegers.asUnsignedByteArray(numAB);
int zeroes = -(t + b + 1) & 15;
byte[] Q = new byte[t + zeroes + 1 + b];
System.arraycopy(T, 0, Q, 0, t);
Q[t + zeroes] = (byte)round;
System.arraycopy(bytesAB, 0, Q, Q.length - bytesAB.length, bytesAB.length);
// ii.
byte[] R = prf(cipher, Arrays.concatenate(P, Q));
// iii.
byte[] sBlocks = R;
if (d > BLOCK_SIZE)
{
int sBlocksLen = (d + BLOCK_SIZE - 1) / BLOCK_SIZE;
sBlocks = new byte[sBlocksLen * BLOCK_SIZE];
int j0 = Pack.bigEndianToInt(R, BLOCK_SIZE - 4);
System.arraycopy(R, 0, sBlocks, 0, BLOCK_SIZE);
for (int j = 1; j < sBlocksLen; ++j)
{
int sOff = j * BLOCK_SIZE;
System.arraycopy(R, 0, sBlocks, sOff, BLOCK_SIZE - 4);
Pack.intToBigEndian(j0 ^ j, sBlocks, sOff + BLOCK_SIZE - 4);
cipher.processBlock(sBlocks, sOff, sBlocks, sOff);
}
}
// iv.
return num(sBlocks, 0, d);
}
protected static BigInteger calculateY_FF3(BlockCipher cipher, byte[] T, int wOff, int round, short[] AB, RadixConverter radixConverter)
{
// ii.
byte[] P = new byte[BLOCK_SIZE];
Pack.intToBigEndian(Pack.bigEndianToInt(T, wOff) ^ round, P, 0);
BigInteger numAB = radixConverter.fromEncoding(AB);
BigIntegers.asUnsignedByteArray(numAB, P, 4, BLOCK_SIZE - 4);
// iii.
Arrays.reverseInPlace(P);
cipher.processBlock(P, 0, P, 0);
Arrays.reverseInPlace(P);
byte[] S = P;
// iv.
return num(S, 0, S.length);
}
protected static void checkArgs(BlockCipher cipher, boolean isFF1, int radix, short[] buf, int off, int len)
{
checkCipher(cipher);
if (radix < 2 || radix > (1 << 16))
{
throw new IllegalArgumentException();
}
checkData(isFF1, radix, buf, off, len);
}
protected static void checkArgs(BlockCipher cipher, boolean isFF1, int radix, byte[] buf, int off, int len)
{
checkCipher(cipher);
if (radix < 2 || radix > (1 << 8))
{
throw new IllegalArgumentException();
}
checkData(isFF1, radix, buf, off, len);
}
protected static void checkCipher(BlockCipher cipher)
{
if (BLOCK_SIZE != cipher.getBlockSize())
{
throw new IllegalArgumentException();
}
}
protected static void checkData(boolean isFF1, int radix, short[] buf, int off, int len)
{
checkLength(isFF1, radix, len);
for (int i = 0; i < len; ++i)
{
int b = buf[off + i] & 0xFFFF;
if (b >= radix)
{
throw new IllegalArgumentException("input data outside of radix");
}
}
}
protected static void checkData(boolean isFF1, int radix, byte[] buf, int off, int len)
{
checkLength(isFF1, radix, len);
for (int i = 0; i < len; ++i)
{
int b = buf[off + i] & 0xFF;
if (b >= radix)
{
throw new IllegalArgumentException("input data outside of radix");
}
}
}
private static void checkLength(boolean isFF1, int radix, int len)
{
if (len < 2 || Math.pow(radix, len) < 1000000)
{
throw new IllegalArgumentException("input too short");
}
if (!isFF1)
{
int maxLen = 2 * (int)(Math.floor(Math.log(TWO_TO_96) / Math.log(radix)));
if (len > maxLen)
{
throw new IllegalArgumentException("maximum input length is " + maxLen);
}
}
}
protected static byte[] implDecryptFF3(BlockCipher cipher, RadixConverter radixConverter, byte[] tweak64, byte[] buf, int off, int len)
{
// Algorithm 10
byte[] T = tweak64;
int n = len;
int v = n / 2, u = n - v;
short[] A = toShort(buf, off, u);
short[] B = toShort(buf, off + u, v);
short[] rv = decFF3_1(cipher, radixConverter, T, n, v, u, A, B);
return toByte(rv);
}
protected static short[] implDecryptFF3w(BlockCipher cipher, RadixConverter radixConverter, byte[] tweak64, short[] buf, int off, int len)
{
// Algorithm 10
byte[] T = tweak64;
int n = len;
int v = n / 2, u = n - v;
short[] A = new short[u];
short[] B = new short[v];
System.arraycopy(buf, off, A, 0, u);
System.arraycopy(buf, off + u, B, 0, v);
return decFF3_1(cipher, radixConverter, T, n, v, u, A, B);
}
private static short[] decFF3_1(BlockCipher cipher, RadixConverter radixConverter, byte[] T, int n, int v, int u, short[] A, short[] B)
{
BigInteger bigRadix = BigInteger.valueOf(radixConverter.getRadix());
BigInteger[] modVU = calculateModUV(bigRadix, v, u);
int m = u;
// Note we keep A, B in reverse order throughout
Arrays.reverseInPlace(A);
Arrays.reverseInPlace(B);
for (int i = 7; i >= 0; --i)
{
// i.
m = n - m;
BigInteger modulus = modVU[1 - (i & 1)];
int wOff = 4 - ((i & 1) * 4);
// ii. - iv.
BigInteger y = calculateY_FF3(cipher, T, wOff, i, A, radixConverter);
// v.
BigInteger c = radixConverter.fromEncoding(B).subtract(y).mod(modulus);
// vi. - viii.
short[] C = B;
B = A;
A = C;
radixConverter.toEncoding(c, m, C);
}
Arrays.reverseInPlace(A);
Arrays.reverseInPlace(B);
return Arrays.concatenate(A, B);
}
protected static byte[] implEncryptFF3(BlockCipher cipher, RadixConverter radixConverter, byte[] tweak64, byte[] buf, int off, int len)
{
// Algorithm 9
byte[] T = tweak64;
int n = len;
int v = n / 2, u = n - v;
short[] A = toShort(buf, off, u);
short[] B = toShort(buf, off + u, v);
short[] rv = encFF3_1(cipher, radixConverter, T, n, v, u, A, B);
return toByte(rv);
}
protected static short[] implEncryptFF3w(BlockCipher cipher, RadixConverter radixConverter, byte[] tweak64, short[] buf, int off, int len)
{
// Algorithm 9
byte[] T = tweak64;
int n = len;
int v = n / 2, u = n - v;
short[] A = new short[u];
short[] B = new short[v];
System.arraycopy(buf, off, A, 0, u);
System.arraycopy(buf, off + u, B, 0, v);
return encFF3_1(cipher, radixConverter, T, n, v, u, A, B);
}
private static short[] encFF3_1(BlockCipher cipher, RadixConverter radixConverter, byte[] t, int n, int v, int u, short[] a, short[] b)
{
BigInteger bigRadix = BigInteger.valueOf(radixConverter.getRadix());
BigInteger[] modVU = calculateModUV(bigRadix, v, u);
int m = v;
// Note we keep A, B in reverse order throughout
Arrays.reverseInPlace(a);
Arrays.reverseInPlace(b);
for (int i = 0; i < 8; ++i)
{
// i.
m = n - m;
BigInteger modulus = modVU[1 - (i & 1)];
int wOff = 4 - ((i & 1) * 4);
// ii. - iv.
BigInteger y = calculateY_FF3(cipher, t, wOff, i, b, radixConverter);
// v.
BigInteger c = radixConverter.fromEncoding(a).add(y).mod(modulus);
// vi. - viii.
short[] C = a;
a = b;
b = C;
radixConverter.toEncoding(c, m, C);
}
Arrays.reverseInPlace(a);
Arrays.reverseInPlace(b);
return Arrays.concatenate(a, b);
}
protected static BigInteger num(byte[] buf, int off, int len)
{
return new BigInteger(1, Arrays.copyOfRange(buf, off, off + len));
}
protected static byte[] prf(BlockCipher c, byte[] x)
{
if ((x.length % BLOCK_SIZE) != 0)
{
throw new IllegalArgumentException();
}
int m = x.length / BLOCK_SIZE;
byte[] y = new byte[BLOCK_SIZE];
for (int i = 0; i < m; ++i)
{
Bytes.xorTo(BLOCK_SIZE, x, i * BLOCK_SIZE, y, 0);
c.processBlock(y, 0, y, 0);
}
return y;
}
private static byte[] toByte(short[] buf)
{
byte[] s = new byte[buf.length];
for (int i = 0; i != s.length; i++)
{
s[i] = (byte)buf[i];
}
return s;
}
private static short[] toShort(byte[] buf, int off, int len)
{
short[] s = new short[len];
for (int i = 0; i != s.length; i++)
{
s[i] = (short)(buf[off + i] & 0xFF);
}
return s;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy