org.bouncycastle.math.ec.ECCurve Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-jdk15to18 Show documentation
Show all versions of bcprov-ext-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.8 and up. Note: this package includes the NTRU encryption algorithms.
package org.bouncycastle.math.ec;
import java.math.BigInteger;
import java.security.SecureRandom;
import java.util.Collections;
import java.util.HashSet;
import java.util.Hashtable;
import java.util.Random;
import java.util.Set;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.math.Primes;
import org.bouncycastle.math.ec.endo.ECEndomorphism;
import org.bouncycastle.math.ec.endo.GLVEndomorphism;
import org.bouncycastle.math.field.FiniteField;
import org.bouncycastle.math.field.FiniteFields;
import org.bouncycastle.math.raw.Nat;
import org.bouncycastle.util.BigIntegers;
import org.bouncycastle.util.Integers;
import org.bouncycastle.util.Properties;
/**
* base class for an elliptic curve
*/
public abstract class ECCurve
{
public static final int COORD_AFFINE = 0;
public static final int COORD_HOMOGENEOUS = 1;
public static final int COORD_JACOBIAN = 2;
public static final int COORD_JACOBIAN_CHUDNOVSKY = 3;
public static final int COORD_JACOBIAN_MODIFIED = 4;
public static final int COORD_LAMBDA_AFFINE = 5;
public static final int COORD_LAMBDA_PROJECTIVE = 6;
public static final int COORD_SKEWED = 7;
public static int[] getAllCoordinateSystems()
{
return new int[]{ COORD_AFFINE, COORD_HOMOGENEOUS, COORD_JACOBIAN, COORD_JACOBIAN_CHUDNOVSKY,
COORD_JACOBIAN_MODIFIED, COORD_LAMBDA_AFFINE, COORD_LAMBDA_PROJECTIVE, COORD_SKEWED };
}
public class Config
{
protected int coord;
protected ECEndomorphism endomorphism;
protected ECMultiplier multiplier;
Config(int coord, ECEndomorphism endomorphism, ECMultiplier multiplier)
{
this.coord = coord;
this.endomorphism = endomorphism;
this.multiplier = multiplier;
}
public Config setCoordinateSystem(int coord)
{
this.coord = coord;
return this;
}
public Config setEndomorphism(ECEndomorphism endomorphism)
{
this.endomorphism = endomorphism;
return this;
}
public Config setMultiplier(ECMultiplier multiplier)
{
this.multiplier = multiplier;
return this;
}
public ECCurve create()
{
if (!supportsCoordinateSystem(coord))
{
throw new IllegalStateException("unsupported coordinate system");
}
ECCurve c = cloneCurve();
if (c == ECCurve.this)
{
throw new IllegalStateException("implementation returned current curve");
}
// NOTE: Synchronization added to keep FindBugs™ happy
synchronized (c)
{
c.coord = coord;
c.endomorphism = endomorphism;
c.multiplier = multiplier;
}
return c;
}
}
protected FiniteField field;
protected ECFieldElement a, b;
protected BigInteger order, cofactor;
protected int coord = COORD_AFFINE;
protected ECEndomorphism endomorphism = null;
protected ECMultiplier multiplier = null;
protected ECCurve(FiniteField field)
{
this.field = field;
}
public abstract int getFieldSize();
public abstract ECFieldElement fromBigInteger(BigInteger x);
public abstract boolean isValidFieldElement(BigInteger x);
public abstract ECFieldElement randomFieldElement(SecureRandom r);
public abstract ECFieldElement randomFieldElementMult(SecureRandom r);
public synchronized Config configure()
{
return new Config(this.coord, this.endomorphism, this.multiplier);
}
public ECPoint validatePoint(BigInteger x, BigInteger y)
{
ECPoint p = createPoint(x, y);
if (!p.isValid())
{
throw new IllegalArgumentException("Invalid point coordinates");
}
return p;
}
public ECPoint createPoint(BigInteger x, BigInteger y)
{
return createRawPoint(fromBigInteger(x), fromBigInteger(y));
}
protected abstract ECCurve cloneCurve();
protected abstract ECPoint createRawPoint(ECFieldElement x, ECFieldElement y);
protected abstract ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs);
protected ECMultiplier createDefaultMultiplier()
{
if (endomorphism instanceof GLVEndomorphism)
{
return new GLVMultiplier(this, (GLVEndomorphism)endomorphism);
}
return new WNafL2RMultiplier();
}
public boolean supportsCoordinateSystem(int coord)
{
return coord == COORD_AFFINE;
}
public PreCompInfo getPreCompInfo(ECPoint point, String name)
{
checkPoint(point);
Hashtable table;
synchronized (point)
{
table = point.preCompTable;
}
if (null == table)
{
return null;
}
synchronized (table)
{
return (PreCompInfo)table.get(name);
}
}
/**
* Compute a PreCompInfo
for a point on this curve, under a given name. Used by
* ECMultiplier
s to save the precomputation for this ECPoint
for use
* by subsequent multiplication.
*
* @param point
* The ECPoint
to store precomputations for.
* @param name
* A String
used to index precomputations of different types.
* @param callback
* Called to calculate the PreCompInfo
.
*/
public PreCompInfo precompute(ECPoint point, String name, PreCompCallback callback)
{
checkPoint(point);
Hashtable table;
synchronized (point)
{
table = point.preCompTable;
if (null == table)
{
point.preCompTable = table = new Hashtable(4);
}
}
synchronized (table)
{
PreCompInfo existing = (PreCompInfo)table.get(name);
PreCompInfo result = callback.precompute(existing);
if (result != existing)
{
table.put(name, result);
}
return result;
}
}
public ECPoint importPoint(ECPoint p)
{
if (this == p.getCurve())
{
return p;
}
if (p.isInfinity())
{
return getInfinity();
}
// TODO Default behaviour could be improved if the two curves have the same coordinate system by copying any Z coordinates.
p = p.normalize();
return createPoint(p.getXCoord().toBigInteger(), p.getYCoord().toBigInteger());
}
/**
* Normalization ensures that any projective coordinate is 1, and therefore that the x, y
* coordinates reflect those of the equivalent point in an affine coordinate system. Where more
* than one point is to be normalized, this method will generally be more efficient than
* normalizing each point separately.
*
* @param points
* An array of points that will be updated in place with their normalized versions,
* where necessary
*/
public void normalizeAll(ECPoint[] points)
{
normalizeAll(points, 0, points.length, null);
}
/**
* Normalization ensures that any projective coordinate is 1, and therefore that the x, y
* coordinates reflect those of the equivalent point in an affine coordinate system. Where more
* than one point is to be normalized, this method will generally be more efficient than
* normalizing each point separately. An (optional) z-scaling factor can be applied; effectively
* each z coordinate is scaled by this value prior to normalization (but only one
* actual multiplication is needed).
*
* @param points
* An array of points that will be updated in place with their normalized versions,
* where necessary
* @param off
* The start of the range of points to normalize
* @param len
* The length of the range of points to normalize
* @param iso
* The (optional) z-scaling factor - can be null
*/
public void normalizeAll(ECPoint[] points, int off, int len, ECFieldElement iso)
{
checkPoints(points, off, len);
switch (this.getCoordinateSystem())
{
case ECCurve.COORD_AFFINE:
case ECCurve.COORD_LAMBDA_AFFINE:
{
if (iso != null)
{
throw new IllegalArgumentException("'iso' not valid for affine coordinates");
}
return;
}
}
/*
* Figure out which of the points actually need to be normalized
*/
ECFieldElement[] zs = new ECFieldElement[len];
int[] indices = new int[len];
int count = 0;
for (int i = 0; i < len; ++i)
{
ECPoint p = points[off + i];
if (null != p && (iso != null || !p.isNormalized()))
{
zs[count] = p.getZCoord(0);
indices[count++] = off + i;
}
}
if (count == 0)
{
return;
}
ECAlgorithms.montgomeryTrick(zs, 0, count, iso);
for (int j = 0; j < count; ++j)
{
int index = indices[j];
points[index] = points[index].normalize(zs[j]);
}
}
public abstract ECPoint getInfinity();
public FiniteField getField()
{
return field;
}
public ECFieldElement getA()
{
return a;
}
public ECFieldElement getB()
{
return b;
}
public BigInteger getOrder()
{
return order;
}
public BigInteger getCofactor()
{
return cofactor;
}
public int getCoordinateSystem()
{
return coord;
}
protected abstract ECPoint decompressPoint(int yTilde, BigInteger X1);
public ECEndomorphism getEndomorphism()
{
return endomorphism;
}
/**
* Sets the default ECMultiplier
, unless already set.
*
* We avoid synchronizing for performance reasons, so there is no uniqueness guarantee.
*/
public ECMultiplier getMultiplier()
{
if (this.multiplier == null)
{
this.multiplier = createDefaultMultiplier();
}
return this.multiplier;
}
/**
* Decode a point on this curve from its ASN.1 encoding. The different
* encodings are taken account of, including point compression for
* Fp
(X9.62 s 4.2.1 pg 17).
* @return The decoded point.
*/
public ECPoint decodePoint(byte[] encoded)
{
ECPoint p = null;
int expectedLength = (getFieldSize() + 7) / 8;
byte type = encoded[0];
switch (type)
{
case 0x00: // infinity
{
if (encoded.length != 1)
{
throw new IllegalArgumentException("Incorrect length for infinity encoding");
}
p = getInfinity();
break;
}
case 0x02: // compressed
case 0x03: // compressed
{
if (encoded.length != (expectedLength + 1))
{
throw new IllegalArgumentException("Incorrect length for compressed encoding");
}
int yTilde = type & 1;
BigInteger X = BigIntegers.fromUnsignedByteArray(encoded, 1, expectedLength);
p = decompressPoint(yTilde, X);
if (!p.implIsValid(true, true))
{
throw new IllegalArgumentException("Invalid point");
}
break;
}
case 0x04: // uncompressed
{
if (encoded.length != (2 * expectedLength + 1))
{
throw new IllegalArgumentException("Incorrect length for uncompressed encoding");
}
BigInteger X = BigIntegers.fromUnsignedByteArray(encoded, 1, expectedLength);
BigInteger Y = BigIntegers.fromUnsignedByteArray(encoded, 1 + expectedLength, expectedLength);
p = validatePoint(X, Y);
break;
}
case 0x06: // hybrid
case 0x07: // hybrid
{
if (encoded.length != (2 * expectedLength + 1))
{
throw new IllegalArgumentException("Incorrect length for hybrid encoding");
}
BigInteger X = BigIntegers.fromUnsignedByteArray(encoded, 1, expectedLength);
BigInteger Y = BigIntegers.fromUnsignedByteArray(encoded, 1 + expectedLength, expectedLength);
if (Y.testBit(0) != (type == 0x07))
{
throw new IllegalArgumentException("Inconsistent Y coordinate in hybrid encoding");
}
p = validatePoint(X, Y);
break;
}
default:
throw new IllegalArgumentException("Invalid point encoding 0x" + Integer.toString(type, 16));
}
if (type != 0x00 && p.isInfinity())
{
throw new IllegalArgumentException("Invalid infinity encoding");
}
return p;
}
/**
* Create a cache-safe lookup table for the specified sequence of points. All the points MUST
* belong to this {@link ECCurve} instance, and MUST already be normalized.
*/
public ECLookupTable createCacheSafeLookupTable(final ECPoint[] points, int off, final int len)
{
final int FE_BYTES = (getFieldSize() + 7) >>> 3;
final byte[] table = new byte[len * FE_BYTES * 2];
{
int pos = 0;
for (int i = 0; i < len; ++i)
{
ECPoint p = points[off + i];
byte[] px = p.getRawXCoord().toBigInteger().toByteArray();
byte[] py = p.getRawYCoord().toBigInteger().toByteArray();
int pxStart = px.length > FE_BYTES ? 1 : 0, pxLen = px.length - pxStart;
int pyStart = py.length > FE_BYTES ? 1 : 0, pyLen = py.length - pyStart;
System.arraycopy(px, pxStart, table, pos + FE_BYTES - pxLen, pxLen); pos += FE_BYTES;
System.arraycopy(py, pyStart, table, pos + FE_BYTES - pyLen, pyLen); pos += FE_BYTES;
}
}
return new AbstractECLookupTable()
{
public int getSize()
{
return len;
}
public ECPoint lookup(int index)
{
byte[] x = new byte[FE_BYTES], y = new byte[FE_BYTES];
int pos = 0;
for (int i = 0; i < len; ++i)
{
int MASK = ((i ^ index) - 1) >> 31;
for (int j = 0; j < FE_BYTES; ++j)
{
x[j] ^= table[pos + j] & MASK;
y[j] ^= table[pos + FE_BYTES + j] & MASK;
}
pos += (FE_BYTES * 2);
}
return createPoint(x, y);
}
public ECPoint lookupVar(int index)
{
byte[] x = new byte[FE_BYTES], y = new byte[FE_BYTES];
int pos = index * FE_BYTES * 2;
for (int j = 0; j < FE_BYTES; ++j)
{
x[j] = table[pos + j];
y[j] = table[pos + FE_BYTES + j];
}
return createPoint(x, y);
}
private ECPoint createPoint(byte[] x, byte[] y)
{
return createRawPoint(fromBigInteger(new BigInteger(1, x)), fromBigInteger(new BigInteger(1, y)));
}
};
}
protected void checkPoint(ECPoint point)
{
if (null == point || (this != point.getCurve()))
{
throw new IllegalArgumentException("'point' must be non-null and on this curve");
}
}
protected void checkPoints(ECPoint[] points)
{
checkPoints(points, 0, points.length);
}
protected void checkPoints(ECPoint[] points, int off, int len)
{
if (points == null)
{
throw new IllegalArgumentException("'points' cannot be null");
}
if (off < 0 || len < 0 || (off > (points.length - len)))
{
throw new IllegalArgumentException("invalid range specified for 'points'");
}
for (int i = 0; i < len; ++i)
{
ECPoint point = points[off + i];
if (null != point && this != point.getCurve())
{
throw new IllegalArgumentException("'points' entries must be null or on this curve");
}
}
}
public boolean equals(ECCurve other)
{
return this == other
|| (null != other
&& getField().equals(other.getField())
&& getA().toBigInteger().equals(other.getA().toBigInteger())
&& getB().toBigInteger().equals(other.getB().toBigInteger()));
}
public boolean equals(Object obj)
{
return this == obj || (obj instanceof ECCurve && equals((ECCurve)obj));
}
public int hashCode()
{
return getField().hashCode()
^ Integers.rotateLeft(getA().toBigInteger().hashCode(), 8)
^ Integers.rotateLeft(getB().toBigInteger().hashCode(), 16);
}
public static abstract class AbstractFp extends ECCurve
{
protected AbstractFp(BigInteger q)
{
super(FiniteFields.getPrimeField(q));
}
public boolean isValidFieldElement(BigInteger x)
{
return x != null && x.signum() >= 0 && x.compareTo(this.getField().getCharacteristic()) < 0;
}
public ECFieldElement randomFieldElement(SecureRandom r)
{
/*
* NOTE: BigInteger comparisons in the rejection sampling are not constant-time, so we
* use the product of two independent elements to mitigate side-channels.
*/
BigInteger p = getField().getCharacteristic();
ECFieldElement fe1 = fromBigInteger(implRandomFieldElement(r, p));
ECFieldElement fe2 = fromBigInteger(implRandomFieldElement(r, p));
return fe1.multiply(fe2);
}
public ECFieldElement randomFieldElementMult(SecureRandom r)
{
/*
* NOTE: BigInteger comparisons in the rejection sampling are not constant-time, so we
* use the product of two independent elements to mitigate side-channels.
*/
BigInteger p = getField().getCharacteristic();
ECFieldElement fe1 = fromBigInteger(implRandomFieldElementMult(r, p));
ECFieldElement fe2 = fromBigInteger(implRandomFieldElementMult(r, p));
return fe1.multiply(fe2);
}
protected ECPoint decompressPoint(int yTilde, BigInteger X1)
{
ECFieldElement x = this.fromBigInteger(X1);
ECFieldElement rhs = x.square().add(this.a).multiply(x).add(this.b);
ECFieldElement y = rhs.sqrt();
/*
* If y is not a square, then we haven't got a point on the curve
*/
if (y == null)
{
throw new IllegalArgumentException("Invalid point compression");
}
if (y.testBitZero() != (yTilde == 1))
{
// Use the other root
y = y.negate();
}
return this.createRawPoint(x, y);
}
private static BigInteger implRandomFieldElement(SecureRandom r, BigInteger p)
{
BigInteger x;
do
{
x = BigIntegers.createRandomBigInteger(p.bitLength(), r);
}
while (x.compareTo(p) >= 0);
return x;
}
private static BigInteger implRandomFieldElementMult(SecureRandom r, BigInteger p)
{
BigInteger x;
do
{
x = BigIntegers.createRandomBigInteger(p.bitLength(), r);
}
while (x.signum() <= 0 || x.compareTo(p) >= 0);
return x;
}
}
/**
* Elliptic curve over Fp
*/
public static class Fp extends AbstractFp
{
private static final int FP_DEFAULT_COORDS = ECCurve.COORD_JACOBIAN_MODIFIED;
private static final Set knownQs = Collections.synchronizedSet(new HashSet());
private static final BigIntegers.Cache validatedQs = new BigIntegers.Cache();
BigInteger q, r;
ECPoint.Fp infinity;
/**
* @deprecated use constructor taking order/cofactor
*/
public Fp(BigInteger q, BigInteger a, BigInteger b)
{
this(q, a, b, null, null);
}
public Fp(BigInteger q, BigInteger a, BigInteger b, BigInteger order, BigInteger cofactor)
{
this(q, a, b, order, cofactor, false);
}
public Fp(BigInteger q, BigInteger a, BigInteger b, BigInteger order, BigInteger cofactor, boolean isInternal)
{
super(q);
if (isInternal)
{
this.q = q;
knownQs.add(q);
}
else if (knownQs.contains(q) || validatedQs.contains(q))
{
this.q = q;
}
else
{
int maxBitLength = Properties.asInteger("org.bouncycastle.ec.fp_max_size", 1042); // 2 * 521
int certainty = Properties.asInteger("org.bouncycastle.ec.fp_certainty", 100);
int qBitLength = q.bitLength();
if (maxBitLength < qBitLength)
{
throw new IllegalArgumentException("Fp q value out of range");
}
if (Primes.hasAnySmallFactors(q) || !Primes.isMRProbablePrime(
q, CryptoServicesRegistrar.getSecureRandom(), getNumberOfIterations(qBitLength, certainty)))
{
throw new IllegalArgumentException("Fp q value not prime");
}
validatedQs.add(q);
this.q = q;
}
this.r = ECFieldElement.Fp.calculateResidue(q);
this.infinity = new ECPoint.Fp(this, null, null);
this.a = fromBigInteger(a);
this.b = fromBigInteger(b);
this.order = order;
this.cofactor = cofactor;
this.coord = FP_DEFAULT_COORDS;
}
protected Fp(BigInteger q, BigInteger r, ECFieldElement a, ECFieldElement b, BigInteger order, BigInteger cofactor)
{
super(q);
this.q = q;
this.r = r;
this.infinity = new ECPoint.Fp(this, null, null);
this.a = a;
this.b = b;
this.order = order;
this.cofactor = cofactor;
this.coord = FP_DEFAULT_COORDS;
}
protected ECCurve cloneCurve()
{
return new Fp(this.q, this.r, this.a, this.b, this.order, this.cofactor);
}
public boolean supportsCoordinateSystem(int coord)
{
switch (coord)
{
case ECCurve.COORD_AFFINE:
case ECCurve.COORD_HOMOGENEOUS:
case ECCurve.COORD_JACOBIAN:
case ECCurve.COORD_JACOBIAN_MODIFIED:
return true;
default:
return false;
}
}
public BigInteger getQ()
{
return q;
}
public int getFieldSize()
{
return q.bitLength();
}
public ECFieldElement fromBigInteger(BigInteger x)
{
if (x == null || x.signum() < 0 || x.compareTo(q) >= 0)
{
throw new IllegalArgumentException("x value invalid for Fp field element");
}
return new ECFieldElement.Fp(this.q, this.r, x);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y)
{
return new ECPoint.Fp(this, x, y);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs)
{
return new ECPoint.Fp(this, x, y, zs);
}
public ECPoint importPoint(ECPoint p)
{
if (this != p.getCurve() && this.getCoordinateSystem() == ECCurve.COORD_JACOBIAN && !p.isInfinity())
{
switch (p.getCurve().getCoordinateSystem())
{
case ECCurve.COORD_JACOBIAN:
case ECCurve.COORD_JACOBIAN_CHUDNOVSKY:
case ECCurve.COORD_JACOBIAN_MODIFIED:
return new ECPoint.Fp(this,
fromBigInteger(p.x.toBigInteger()),
fromBigInteger(p.y.toBigInteger()),
new ECFieldElement[]{ fromBigInteger(p.zs[0].toBigInteger()) });
default:
break;
}
}
return super.importPoint(p);
}
public ECPoint getInfinity()
{
return infinity;
}
}
public static abstract class AbstractF2m extends ECCurve
{
public static BigInteger inverse(int m, int[] ks, BigInteger x)
{
return new LongArray(x).modInverse(m, ks).toBigInteger();
}
/**
* The auxiliary values s0
and
* s1
used for partial modular reduction for
* Koblitz curves.
*/
private BigInteger[] si = null;
private static FiniteField buildField(int m, int k1, int k2, int k3)
{
int[] exponents = (k2 | k3) == 0
? new int[]{ 0, k1, m }
: new int[]{ 0, k1, k2, k3, m };
return FiniteFields.getBinaryExtensionField(exponents);
}
protected AbstractF2m(int m, int k1, int k2, int k3)
{
super(buildField(m, k1, k2, k3));
}
public ECPoint createPoint(BigInteger x, BigInteger y)
{
ECFieldElement X = this.fromBigInteger(x), Y = this.fromBigInteger(y);
int coord = this.getCoordinateSystem();
switch (coord)
{
case ECCurve.COORD_LAMBDA_AFFINE:
case ECCurve.COORD_LAMBDA_PROJECTIVE:
{
if (X.isZero())
{
if (!Y.square().equals(this.getB()))
{
throw new IllegalArgumentException();
}
}
/*
* NOTE: A division could be avoided using a projective result, except at present
* callers will expect that the result is already normalized.
*/
// else if (coord == COORD_LAMBDA_PROJECTIVE)
// {
// ECFieldElement Z = X;
// X = X.square();
// Y = Y.add(X);
// return createRawPoint(X, Y, new ECFieldElement[]{ Z });
// }
else
{
// Y becomes Lambda (X + Y/X) here
Y = Y.divide(X).add(X);
}
break;
}
default:
{
break;
}
}
return this.createRawPoint(X, Y);
}
public boolean isValidFieldElement(BigInteger x)
{
return x != null && x.signum() >= 0 && x.bitLength() <= this.getFieldSize();
}
public ECFieldElement randomFieldElement(SecureRandom r)
{
int m = getFieldSize();
return fromBigInteger(BigIntegers.createRandomBigInteger(m, r));
}
public ECFieldElement randomFieldElementMult(SecureRandom r)
{
/*
* NOTE: BigInteger comparisons in the rejection sampling are not constant-time, so we
* use the product of two independent elements to mitigate side-channels.
*/
int m = getFieldSize();
ECFieldElement fe1 = fromBigInteger(implRandomFieldElementMult(r, m));
ECFieldElement fe2 = fromBigInteger(implRandomFieldElementMult(r, m));
return fe1.multiply(fe2);
}
/**
* Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
*
* @param yTilde
* ~yp, an indication bit for the decompression of yp.
* @param X1
* The field element xp.
* @return the decompressed point.
*/
protected ECPoint decompressPoint(int yTilde, BigInteger X1)
{
ECFieldElement x = this.fromBigInteger(X1), y = null;
if (x.isZero())
{
y = this.getB().sqrt();
}
else
{
ECFieldElement beta = x.square().invert().multiply(this.getB()).add(this.getA()).add(x);
ECFieldElement z = solveQuadraticEquation(beta);
if (z != null)
{
if (z.testBitZero() != (yTilde == 1))
{
z = z.addOne();
}
switch (this.getCoordinateSystem())
{
case ECCurve.COORD_LAMBDA_AFFINE:
case ECCurve.COORD_LAMBDA_PROJECTIVE:
{
y = z.add(x);
break;
}
default:
{
y = z.multiply(x);
break;
}
}
}
}
if (y == null)
{
throw new IllegalArgumentException("Invalid point compression");
}
return this.createRawPoint(x, y);
}
/**
* Solves a quadratic equation z2 + z = beta
(X9.62
* D.1.6) The other solution is z + 1
.
*
* @param beta
* The value to solve the quadratic equation for.
* @return the solution for z2 + z = beta
or
* null
if no solution exists.
*/
protected ECFieldElement solveQuadraticEquation(ECFieldElement beta)
{
ECFieldElement.AbstractF2m betaF2m = (ECFieldElement.AbstractF2m)beta;
boolean fastTrace = betaF2m.hasFastTrace();
if (fastTrace && 0 != betaF2m.trace())
{
return null;
}
int m = this.getFieldSize();
// For odd m, use the half-trace
if (0 != (m & 1))
{
ECFieldElement r = betaF2m.halfTrace();
if (fastTrace || r.square().add(r).add(beta).isZero())
{
return r;
}
return null;
}
if (beta.isZero())
{
return beta;
}
ECFieldElement gamma, z, zeroElement = this.fromBigInteger(ECConstants.ZERO);
Random rand = new Random();
do
{
ECFieldElement t = this.fromBigInteger(new BigInteger(m, rand));
z = zeroElement;
ECFieldElement w = beta;
for (int i = 1; i < m; i++)
{
ECFieldElement w2 = w.square();
z = z.square().add(w2.multiply(t));
w = w2.add(beta);
}
if (!w.isZero())
{
return null;
}
gamma = z.square().add(z);
}
while (gamma.isZero());
return z;
}
/**
* @return the auxiliary values s0
and
* s1
used for partial modular reduction for
* Koblitz curves.
*/
synchronized BigInteger[] getSi()
{
if (si == null)
{
si = Tnaf.getSi(this);
}
return si;
}
/**
* Returns true if this is a Koblitz curve (ABC curve).
* @return true if this is a Koblitz curve (ABC curve), false otherwise
*/
public boolean isKoblitz()
{
return this.order != null && this.cofactor != null && this.b.isOne() && (this.a.isZero() || this.a.isOne());
}
private static BigInteger implRandomFieldElementMult(SecureRandom r, int m)
{
BigInteger x;
do
{
x = BigIntegers.createRandomBigInteger(m, r);
}
while (x.signum() <= 0);
return x;
}
}
/**
* Elliptic curves over F2m. The Weierstrass equation is given by
* y2 + xy = x3 + ax2 + b
.
*/
public static class F2m extends AbstractF2m
{
private static final int F2M_DEFAULT_COORDS = ECCurve.COORD_LAMBDA_PROJECTIVE;
/**
* The exponent m
of F2m
.
*/
private int m; // can't be final - JDK 1.1
/**
* TPB: The integer k
where xm +
* xk + 1
represents the reduction polynomial
* f(z)
.
* PPB: The integer k1
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
*/
private int k1; // can't be final - JDK 1.1
/**
* TPB: Always set to 0
* PPB: The integer k2
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
*/
private int k2; // can't be final - JDK 1.1
/**
* TPB: Always set to 0
* PPB: The integer k3
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
*/
private int k3; // can't be final - JDK 1.1
/**
* The point at infinity on this curve.
*/
private ECPoint.F2m infinity; // can't be final - JDK 1.1
/**
* Constructor for Trinomial Polynomial Basis (TPB).
* @param m The exponent m
of
* F2m
.
* @param k The integer k
where xm +
* xk + 1
represents the reduction
* polynomial f(z)
.
* @param a The coefficient a
in the Weierstrass equation
* for non-supersingular elliptic curves over
* F2m
.
* @param b The coefficient b
in the Weierstrass equation
* for non-supersingular elliptic curves over
* F2m
.
* @deprecated use constructor taking order/cofactor
*/
public F2m(
int m,
int k,
BigInteger a,
BigInteger b)
{
this(m, k, 0, 0, a, b, null, null);
}
/**
* Constructor for Trinomial Polynomial Basis (TPB).
* @param m The exponent m
of
* F2m
.
* @param k The integer k
where xm +
* xk + 1
represents the reduction
* polynomial f(z)
.
* @param a The coefficient a
in the Weierstrass equation
* for non-supersingular elliptic curves over
* F2m
.
* @param b The coefficient b
in the Weierstrass equation
* for non-supersingular elliptic curves over
* F2m
.
* @param order The order of the main subgroup of the elliptic curve.
* @param cofactor The cofactor of the elliptic curve, i.e.
* #Ea(F2m) = h * n
.
*/
public F2m(
int m,
int k,
BigInteger a,
BigInteger b,
BigInteger order,
BigInteger cofactor)
{
this(m, k, 0, 0, a, b, order, cofactor);
}
/**
* Constructor for Pentanomial Polynomial Basis (PPB).
* @param m The exponent m
of
* F2m
.
* @param k1 The integer k1
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
* @param k2 The integer k2
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
* @param k3 The integer k3
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
* @param a The coefficient a
in the Weierstrass equation
* for non-supersingular elliptic curves over
* F2m
.
* @param b The coefficient b
in the Weierstrass equation
* for non-supersingular elliptic curves over
* F2m
.
* @deprecated use constructor taking order/cofactor
*/
public F2m(
int m,
int k1,
int k2,
int k3,
BigInteger a,
BigInteger b)
{
this(m, k1, k2, k3, a, b, null, null);
}
/**
* Constructor for Pentanomial Polynomial Basis (PPB).
* @param m The exponent m
of
* F2m
.
* @param k1 The integer k1
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
* @param k2 The integer k2
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
* @param k3 The integer k3
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
* @param a The coefficient a
in the Weierstrass equation
* for non-supersingular elliptic curves over
* F2m
.
* @param b The coefficient b
in the Weierstrass equation
* for non-supersingular elliptic curves over
* F2m
.
* @param order The order of the main subgroup of the elliptic curve.
* @param cofactor The cofactor of the elliptic curve, i.e.
* #Ea(F2m) = h * n
.
*/
public F2m(
int m,
int k1,
int k2,
int k3,
BigInteger a,
BigInteger b,
BigInteger order,
BigInteger cofactor)
{
super(m, k1, k2, k3);
this.m = m;
this.k1 = k1;
this.k2 = k2;
this.k3 = k3;
this.order = order;
this.cofactor = cofactor;
this.infinity = new ECPoint.F2m(this, null, null);
this.a = fromBigInteger(a);
this.b = fromBigInteger(b);
this.coord = F2M_DEFAULT_COORDS;
}
protected F2m(int m, int k1, int k2, int k3, ECFieldElement a, ECFieldElement b, BigInteger order, BigInteger cofactor)
{
super(m, k1, k2, k3);
this.m = m;
this.k1 = k1;
this.k2 = k2;
this.k3 = k3;
this.order = order;
this.cofactor = cofactor;
this.infinity = new ECPoint.F2m(this, null, null);
this.a = a;
this.b = b;
this.coord = F2M_DEFAULT_COORDS;
}
protected ECCurve cloneCurve()
{
return new F2m(this.m, this.k1, this.k2, this.k3, this.a, this.b, this.order, this.cofactor);
}
public boolean supportsCoordinateSystem(int coord)
{
switch (coord)
{
case ECCurve.COORD_AFFINE:
case ECCurve.COORD_HOMOGENEOUS:
case ECCurve.COORD_LAMBDA_PROJECTIVE:
return true;
default:
return false;
}
}
protected ECMultiplier createDefaultMultiplier()
{
if (isKoblitz())
{
return new WTauNafMultiplier();
}
return super.createDefaultMultiplier();
}
public int getFieldSize()
{
return m;
}
public ECFieldElement fromBigInteger(BigInteger x)
{
if (x == null || x.signum() < 0 || x.bitLength() > m)
{
throw new IllegalArgumentException("x value invalid in F2m field element");
}
int[] ks = (k2 | k3) == 0
? new int[]{ k1 }
: new int[]{ k1, k2, k3 };
return new ECFieldElement.F2m(m, ks, new LongArray(x));
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y)
{
return new ECPoint.F2m(this, x, y);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs)
{
return new ECPoint.F2m(this, x, y, zs);
}
public ECPoint getInfinity()
{
return infinity;
}
public int getM()
{
return m;
}
/**
* Return true if curve uses a Trinomial basis.
*
* @return true if curve Trinomial, false otherwise.
*/
public boolean isTrinomial()
{
return k2 == 0 && k3 == 0;
}
public int getK1()
{
return k1;
}
public int getK2()
{
return k2;
}
public int getK3()
{
return k3;
}
public ECLookupTable createCacheSafeLookupTable(ECPoint[] points, int off, final int len)
{
final int FE_LONGS = (m + 63) >>> 6;
final int[] ks = isTrinomial() ? new int[]{ k1 } : new int[]{ k1, k2, k3 };
final long[] table = new long[len * FE_LONGS * 2];
{
int pos = 0;
for (int i = 0; i < len; ++i)
{
ECPoint p = points[off + i];
((ECFieldElement.F2m)p.getRawXCoord()).x.copyTo(table, pos); pos += FE_LONGS;
((ECFieldElement.F2m)p.getRawYCoord()).x.copyTo(table, pos); pos += FE_LONGS;
}
}
return new AbstractECLookupTable()
{
public int getSize()
{
return len;
}
public ECPoint lookup(int index)
{
long[] x = Nat.create64(FE_LONGS), y = Nat.create64(FE_LONGS);
int pos = 0;
for (int i = 0; i < len; ++i)
{
long MASK = ((i ^ index) - 1) >> 31;
for (int j = 0; j < FE_LONGS; ++j)
{
x[j] ^= table[pos + j] & MASK;
y[j] ^= table[pos + FE_LONGS + j] & MASK;
}
pos += (FE_LONGS * 2);
}
return createPoint(x, y);
}
public ECPoint lookupVar(int index)
{
long[] x = Nat.create64(FE_LONGS), y = Nat.create64(FE_LONGS);
int pos = index * FE_LONGS * 2;
for (int j = 0; j < FE_LONGS; ++j)
{
x[j] = table[pos + j];
y[j] = table[pos + FE_LONGS + j];
}
return createPoint(x, y);
}
private ECPoint createPoint(long[] x, long[] y)
{
ECFieldElement.F2m X = new ECFieldElement.F2m(m, ks, new LongArray(x));
ECFieldElement.F2m Y = new ECFieldElement.F2m(m, ks, new LongArray(y));
return createRawPoint(X, Y);
}
};
}
}
private static int getNumberOfIterations(int bits, int certainty)
{
/*
* NOTE: We enforce a minimum 'certainty' of 100 for bits >= 1024 (else 80). Where the
* certainty is higher than the FIPS 186-4 tables (C.2/C.3) cater to, extra iterations
* are added at the "worst case rate" for the excess.
*/
if (bits >= 1536)
{
return certainty <= 100 ? 3
: certainty <= 128 ? 4
: 4 + (certainty - 128 + 1) / 2;
}
else if (bits >= 1024)
{
return certainty <= 100 ? 4
: certainty <= 112 ? 5
: 5 + (certainty - 112 + 1) / 2;
}
else if (bits >= 512)
{
return certainty <= 80 ? 5
: certainty <= 100 ? 7
: 7 + (certainty - 100 + 1) / 2;
}
else
{
return certainty <= 80 ? 40
: 40 + (certainty - 80 + 1) / 2;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy