org.bouncycastle.math.ec.custom.sec.SecT239K1Curve Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-jdk15to18 Show documentation
Show all versions of bcprov-ext-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.8 and up. Note: this package includes the NTRU encryption algorithms.
package org.bouncycastle.math.ec.custom.sec;
import java.math.BigInteger;
import org.bouncycastle.math.ec.AbstractECLookupTable;
import org.bouncycastle.math.ec.ECConstants;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECCurve.AbstractF2m;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.ec.ECLookupTable;
import org.bouncycastle.math.ec.ECMultiplier;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.ec.WTauNafMultiplier;
import org.bouncycastle.math.raw.Nat256;
import org.bouncycastle.util.encoders.Hex;
public class SecT239K1Curve extends AbstractF2m
{
private static final int SECT239K1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
private static final ECFieldElement[] SECT239K1_AFFINE_ZS = new ECFieldElement[] { new SecT239FieldElement(ECConstants.ONE) };
protected SecT239K1Point infinity;
public SecT239K1Curve()
{
super(239, 158, 0, 0);
this.infinity = new SecT239K1Point(this, null, null);
this.a = fromBigInteger(BigInteger.valueOf(0));
this.b = fromBigInteger(BigInteger.valueOf(1));
this.order = new BigInteger(1, Hex.decodeStrict("2000000000000000000000000000005A79FEC67CB6E91F1C1DA800E478A5"));
this.cofactor = BigInteger.valueOf(4);
this.coord = SECT239K1_DEFAULT_COORDS;
}
protected ECCurve cloneCurve()
{
return new SecT239K1Curve();
}
public boolean supportsCoordinateSystem(int coord)
{
switch (coord)
{
case COORD_LAMBDA_PROJECTIVE:
return true;
default:
return false;
}
}
protected ECMultiplier createDefaultMultiplier()
{
return new WTauNafMultiplier();
}
public int getFieldSize()
{
return 239;
}
public ECFieldElement fromBigInteger(BigInteger x)
{
return new SecT239FieldElement(x);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y)
{
return new SecT239K1Point(this, x, y);
}
protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs)
{
return new SecT239K1Point(this, x, y, zs);
}
public ECPoint getInfinity()
{
return infinity;
}
public boolean isKoblitz()
{
return true;
}
public int getM()
{
return 239;
}
public boolean isTrinomial()
{
return true;
}
public int getK1()
{
return 158;
}
public int getK2()
{
return 0;
}
public int getK3()
{
return 0;
}
public ECLookupTable createCacheSafeLookupTable(ECPoint[] points, int off, final int len)
{
final int FE_LONGS = 4;
final long[] table = new long[len * FE_LONGS * 2];
{
int pos = 0;
for (int i = 0; i < len; ++i)
{
ECPoint p = points[off + i];
Nat256.copy64(((SecT239FieldElement)p.getRawXCoord()).x, 0, table, pos); pos += FE_LONGS;
Nat256.copy64(((SecT239FieldElement)p.getRawYCoord()).x, 0, table, pos); pos += FE_LONGS;
}
}
return new AbstractECLookupTable()
{
public int getSize()
{
return len;
}
public ECPoint lookup(int index)
{
long[] x = Nat256.create64(), y = Nat256.create64();
int pos = 0;
for (int i = 0; i < len; ++i)
{
long MASK = ((i ^ index) - 1) >> 31;
for (int j = 0; j < FE_LONGS; ++j)
{
x[j] ^= table[pos + j] & MASK;
y[j] ^= table[pos + FE_LONGS + j] & MASK;
}
pos += (FE_LONGS * 2);
}
return createPoint(x, y);
}
public ECPoint lookupVar(int index)
{
long[] x = Nat256.create64(), y = Nat256.create64();
int pos = index * FE_LONGS * 2;
for (int j = 0; j < FE_LONGS; ++j)
{
x[j] = table[pos + j];
y[j] = table[pos + FE_LONGS + j];
}
return createPoint(x, y);
}
private ECPoint createPoint(long[] x, long[] y)
{
return createRawPoint(new SecT239FieldElement(x), new SecT239FieldElement(y), SECT239K1_AFFINE_ZS);
}
};
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy