org.bouncycastle.math.ec.rfc8032.Ed25519 Maven / Gradle / Ivy
Show all versions of bcprov-ext-jdk15to18 Show documentation
package org.bouncycastle.math.ec.rfc8032;
import java.security.SecureRandom;
import org.bouncycastle.crypto.Digest;
import org.bouncycastle.crypto.digests.SHA512Digest;
import org.bouncycastle.math.ec.rfc7748.X25519;
import org.bouncycastle.math.ec.rfc7748.X25519Field;
import org.bouncycastle.math.raw.Interleave;
import org.bouncycastle.math.raw.Nat256;
/**
* A low-level implementation of the Ed25519, Ed25519ctx, and Ed25519ph instantiations of the Edwards-Curve
* Digital Signature Algorithm specified in RFC 8032.
*
* The implementation strategy is mostly drawn from Mike Hamburg, "Fast and
* compact elliptic-curve cryptography", notably the "signed multi-comb" algorithm (for scalar
* multiplication by a fixed point), the "half Niels coordinates" (for precomputed points), and the
* "extensible coordinates" (for accumulators). Standard
* extended coordinates are used
* during precomputations, needing only a single extra point addition formula.
*/
public abstract class Ed25519
{
// -x^2 + y^2 == 1 + 0x52036CEE2B6FFE738CC740797779E89800700A4D4141D8AB75EB4DCA135978A3 * x^2 * y^2
public static final class Algorithm
{
public static final int Ed25519 = 0;
public static final int Ed25519ctx = 1;
public static final int Ed25519ph = 2;
}
public static final class PublicPoint
{
final int[] data;
PublicPoint(int[] data)
{
this.data = data;
}
}
private static class F extends X25519Field {};
private static final int COORD_INTS = 8;
private static final int POINT_BYTES = COORD_INTS * 4;
private static final int SCALAR_INTS = 8;
private static final int SCALAR_BYTES = SCALAR_INTS * 4;
public static final int PREHASH_SIZE = 64;
public static final int PUBLIC_KEY_SIZE = POINT_BYTES;
public static final int SECRET_KEY_SIZE = 32;
public static final int SIGNATURE_SIZE = POINT_BYTES + SCALAR_BYTES;
// "SigEd25519 no Ed25519 collisions"
private static final byte[] DOM2_PREFIX = new byte[]{ 0x53, 0x69, 0x67, 0x45, 0x64, 0x32, 0x35, 0x35, 0x31, 0x39,
0x20, 0x6e, 0x6f, 0x20, 0x45, 0x64, 0x32, 0x35, 0x35, 0x31, 0x39, 0x20, 0x63, 0x6f, 0x6c, 0x6c, 0x69, 0x73,
0x69, 0x6f, 0x6e, 0x73 };
private static final int[] P = new int[]{ 0xFFFFFFED, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0x7FFFFFFF };
private static final int[] ORDER8_y1 = new int[]{ 0x706A17C7, 0x4FD84D3D, 0x760B3CBA, 0x0F67100D, 0xFA53202A,
0xC6CC392C, 0x77FDC74E, 0x7A03AC92 };
private static final int[] ORDER8_y2 = new int[]{ 0x8F95E826, 0xB027B2C2, 0x89F4C345, 0xF098EFF2, 0x05ACDFD5,
0x3933C6D3, 0x880238B1, 0x05FC536D };
private static final int[] B_x = new int[]{ 0x0325D51A, 0x018B5823, 0x007B2C95, 0x0304A92D, 0x00D2598E, 0x01D6DC5C,
0x01388C7F, 0x013FEC0A, 0x029E6B72, 0x0042D26D };
private static final int[] B_y = new int[]{ 0x02666658, 0x01999999, 0x00666666, 0x03333333, 0x00CCCCCC, 0x02666666,
0x01999999, 0x00666666, 0x03333333, 0x00CCCCCC, };
// 2^128 * B
private static final int[] B128_x = new int[]{ 0x00B7E824, 0x0011EB98, 0x003E5FC8, 0x024E1739, 0x0131CD0B,
0x014E29A0, 0x034E6138, 0x0132C952, 0x03F9E22F, 0x00984F5F };
private static final int[] B128_y = new int[]{ 0x03F5A66B, 0x02AF4452, 0x0049E5BB, 0x00F28D26, 0x0121A17C,
0x02C29C3A, 0x0047AD89, 0x0087D95F, 0x0332936E, 0x00BE5933 };
// Note that d == -121665/121666
private static final int[] C_d = new int[]{ 0x035978A3, 0x02D37284, 0x018AB75E, 0x026A0A0E, 0x0000E014, 0x0379E898,
0x01D01E5D, 0x01E738CC, 0x03715B7F, 0x00A406D9 };
private static final int[] C_d2 = new int[]{ 0x02B2F159, 0x01A6E509, 0x01156EBD, 0x00D4141D, 0x0001C029, 0x02F3D130,
0x03A03CBB, 0x01CE7198, 0x02E2B6FF, 0x00480DB3 };
private static final int[] C_d4 = new int[]{ 0x0165E2B2, 0x034DCA13, 0x002ADD7A, 0x01A8283B, 0x00038052, 0x01E7A260,
0x03407977, 0x019CE331, 0x01C56DFF, 0x00901B67 };
// private static final int WNAF_WIDTH = 5;
private static final int WNAF_WIDTH_128 = 4;
private static final int WNAF_WIDTH_BASE = 6;
// scalarMultBase is hard-coded for these values of blocks, teeth, spacing so they can't be freely changed
private static final int PRECOMP_BLOCKS = 8;
private static final int PRECOMP_TEETH = 4;
private static final int PRECOMP_SPACING = 8;
private static final int PRECOMP_RANGE = PRECOMP_BLOCKS * PRECOMP_TEETH * PRECOMP_SPACING; // range == 256
private static final int PRECOMP_POINTS = 1 << (PRECOMP_TEETH - 1);
private static final int PRECOMP_MASK = PRECOMP_POINTS - 1;
private static final Object PRECOMP_LOCK = new Object();
private static PointPrecomp[] PRECOMP_BASE_WNAF = null;
private static PointPrecomp[] PRECOMP_BASE128_WNAF = null;
private static int[] PRECOMP_BASE_COMB = null;
private static class PointAccum
{
int[] x = F.create();
int[] y = F.create();
int[] z = F.create();
int[] u = F.create();
int[] v = F.create();
}
private static class PointAffine
{
int[] x = F.create();
int[] y = F.create();
}
private static class PointExtended
{
int[] x = F.create();
int[] y = F.create();
int[] z = F.create();
int[] t = F.create();
}
private static class PointPrecomp
{
int[] ymx_h = F.create(); // (y - x)/2
int[] ypx_h = F.create(); // (y + x)/2
int[] xyd = F.create(); // x.y.d
}
private static class PointPrecompZ
{
int[] ymx_h = F.create(); // (y - x)/2
int[] ypx_h = F.create(); // (y + x)/2
int[] xyd = F.create(); // x.y.d
int[] z = F.create();
}
// Temp space to avoid allocations in point formulae.
private static class PointTemp
{
int[] r0 = F.create();
int[] r1 = F.create();;
}
private static byte[] calculateS(byte[] r, byte[] k, byte[] s)
{
int[] t = new int[SCALAR_INTS * 2]; Scalar25519.decode(r, t);
int[] u = new int[SCALAR_INTS]; Scalar25519.decode(k, u);
int[] v = new int[SCALAR_INTS]; Scalar25519.decode(s, v);
Nat256.mulAddTo(u, v, t);
byte[] result = new byte[SCALAR_BYTES * 2];
Codec.encode32(t, 0, t.length, result, 0);
return Scalar25519.reduce512(result);
}
private static boolean checkContextVar(byte[] ctx , byte phflag)
{
return ctx == null && phflag == 0x00
|| ctx != null && ctx.length < 256;
}
private static int checkPoint(PointAffine p)
{
int[] t = F.create();
int[] u = F.create();
int[] v = F.create();
F.sqr(p.x, u);
F.sqr(p.y, v);
F.mul(u, v, t);
F.sub(u, v, u);
F.mul(t, C_d, t);
F.addOne(t);
F.add(t, u, t);
F.normalize(t);
F.normalize(v);
return F.isZero(t) & ~F.isZero(v);
}
private static int checkPoint(PointAccum p)
{
int[] t = F.create();
int[] u = F.create();
int[] v = F.create();
int[] w = F.create();
F.sqr(p.x, u);
F.sqr(p.y, v);
F.sqr(p.z, w);
F.mul(u, v, t);
F.sub(u, v, u);
F.mul(u, w, u);
F.sqr(w, w);
F.mul(t, C_d, t);
F.add(t, w, t);
F.add(t, u, t);
F.normalize(t);
F.normalize(v);
F.normalize(w);
return F.isZero(t) & ~F.isZero(v) & ~F.isZero(w);
}
private static boolean checkPointFullVar(byte[] p)
{
int y7 = Codec.decode32(p, 28) & 0x7FFFFFFF;
int t0 = y7;
int t1 = y7 ^ P[7];
int t2 = y7 ^ ORDER8_y1[7];
int t3 = y7 ^ ORDER8_y2[7];
for (int i = COORD_INTS - 2; i > 0; --i)
{
int yi = Codec.decode32(p, i * 4);
t0 |= yi;
t1 |= yi ^ P[i];
t2 |= yi ^ ORDER8_y1[i];
t3 |= yi ^ ORDER8_y2[i];
}
int y0 = Codec.decode32(p, 0);
// Reject 0 and 1
if (t0 == 0 && (y0 + Integer.MIN_VALUE) <= (1 + Integer.MIN_VALUE))
return false;
// Reject P - 1 and non-canonical encodings (i.e. >= P)
if (t1 == 0 && (y0 + Integer.MIN_VALUE) >= (P[0] - 1 + Integer.MIN_VALUE))
return false;
t2 |= y0 ^ ORDER8_y1[0];
t3 |= y0 ^ ORDER8_y2[0];
// Reject order 8 points
return (t2 != 0) & (t3 != 0);
}
private static boolean checkPointOrderVar(PointAffine p)
{
PointAccum r = new PointAccum();
scalarMultOrderVar(p, r);
return normalizeToNeutralElementVar(r);
}
private static boolean checkPointVar(byte[] p)
{
if ((Codec.decode32(p, 28) & 0x7FFFFFFF) < P[7])
{
return true;
}
int[] t = new int[COORD_INTS];
Codec.decode32(p, 0, t, 0, COORD_INTS);
t[COORD_INTS - 1] &= 0x7FFFFFFF;
return !Nat256.gte(t, P);
}
private static byte[] copy(byte[] buf, int off, int len)
{
byte[] result = new byte[len];
System.arraycopy(buf, off, result, 0, len);
return result;
}
private static Digest createDigest()
{
Digest d = new SHA512Digest();
if (d.getDigestSize() != 64)
{
throw new IllegalStateException();
}
return d;
}
public static Digest createPrehash()
{
return createDigest();
}
private static boolean decodePointVar(byte[] p, boolean negate, PointAffine r)
{
int x_0 = (p[POINT_BYTES - 1] & 0x80) >>> 7;
F.decode(p, r.y);
int[] u = F.create();
int[] v = F.create();
F.sqr(r.y, u);
F.mul(C_d, u, v);
F.subOne(u);
F.addOne(v);
if (!F.sqrtRatioVar(u, v, r.x))
{
return false;
}
F.normalize(r.x);
if (x_0 == 1 && F.isZeroVar(r.x))
{
return false;
}
if (negate ^ (x_0 != (r.x[0] & 1)))
{
F.negate(r.x, r.x);
F.normalize(r.x);
}
return true;
}
private static void dom2(Digest d, byte phflag, byte[] ctx)
{
// assert ctx != null;
int n = DOM2_PREFIX.length;
byte[] t = new byte[n + 2 + ctx.length];
System.arraycopy(DOM2_PREFIX, 0, t, 0, n);
t[n] = phflag;
t[n + 1] = (byte)ctx.length;
System.arraycopy(ctx, 0, t, n + 2, ctx.length);
d.update(t, 0, t.length);
}
private static void encodePoint(PointAffine p, byte[] r, int rOff)
{
F.encode(p.y, r, rOff);
r[rOff + POINT_BYTES - 1] |= (p.x[0] & 1) << 7;
}
public static void encodePublicPoint(PublicPoint publicPoint, byte[] pk, int pkOff)
{
F.encode(publicPoint.data, F.SIZE, pk, pkOff);
pk[pkOff + POINT_BYTES - 1] |= (publicPoint.data[0] & 1) << 7;
}
private static int encodeResult(PointAccum p, byte[] r, int rOff)
{
PointAffine q = new PointAffine();
normalizeToAffine(p, q);
int result = checkPoint(q);
encodePoint(q, r, rOff);
return result;
}
private static PublicPoint exportPoint(PointAffine p)
{
int[] data = new int[F.SIZE * 2];
F.copy(p.x, 0, data, 0);
F.copy(p.y, 0, data, F.SIZE);
return new PublicPoint(data);
}
public static void generatePrivateKey(SecureRandom random, byte[] k)
{
if (k.length != SECRET_KEY_SIZE)
{
throw new IllegalArgumentException("k");
}
random.nextBytes(k);
}
public static void generatePublicKey(byte[] sk, int skOff, byte[] pk, int pkOff)
{
Digest d = createDigest();
byte[] h = new byte[64];
d.update(sk, skOff, SECRET_KEY_SIZE);
d.doFinal(h, 0);
byte[] s = new byte[SCALAR_BYTES];
pruneScalar(h, 0, s);
scalarMultBaseEncoded(s, pk, pkOff);
}
public static PublicPoint generatePublicKey(byte[] sk, int skOff)
{
Digest d = createDigest();
byte[] h = new byte[64];
d.update(sk, skOff, SECRET_KEY_SIZE);
d.doFinal(h, 0);
byte[] s = new byte[SCALAR_BYTES];
pruneScalar(h, 0, s);
PointAccum p = new PointAccum();
scalarMultBase(s, p);
PointAffine q = new PointAffine();
normalizeToAffine(p, q);
if (0 == checkPoint(q))
{
throw new IllegalStateException();
}
return exportPoint(q);
}
private static int getWindow4(int[] x, int n)
{
int w = n >>> 3, b = (n & 7) << 2;
return (x[w] >>> b) & 15;
}
private static void groupCombBits(int[] n)
{
/*
* Because we are using 4 teeth and 8 spacing, each limb of n corresponds to one of the 8 blocks.
* Therefore we can efficiently group the bits for each comb position using a (double) shuffle.
*/
for (int i = 0; i < n.length; ++i)
{
n[i] = Interleave.shuffle2(n[i]);
}
}
private static void implSign(Digest d, byte[] h, byte[] s, byte[] pk, int pkOff, byte[] ctx, byte phflag, byte[] m,
int mOff, int mLen, byte[] sig, int sigOff)
{
if (ctx != null)
{
dom2(d, phflag, ctx);
}
d.update(h, SCALAR_BYTES, SCALAR_BYTES);
d.update(m, mOff, mLen);
d.doFinal(h, 0);
byte[] r = Scalar25519.reduce512(h);
byte[] R = new byte[POINT_BYTES];
scalarMultBaseEncoded(r, R, 0);
if (ctx != null)
{
dom2(d, phflag, ctx);
}
d.update(R, 0, POINT_BYTES);
d.update(pk, pkOff, POINT_BYTES);
d.update(m, mOff, mLen);
d.doFinal(h, 0);
byte[] k = Scalar25519.reduce512(h);
byte[] S = calculateS(r, k, s);
System.arraycopy(R, 0, sig, sigOff, POINT_BYTES);
System.arraycopy(S, 0, sig, sigOff + POINT_BYTES, SCALAR_BYTES);
}
private static void implSign(byte[] sk, int skOff, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen,
byte[] sig, int sigOff)
{
if (!checkContextVar(ctx, phflag))
{
throw new IllegalArgumentException("ctx");
}
Digest d = createDigest();
byte[] h = new byte[64];
d.update(sk, skOff, SECRET_KEY_SIZE);
d.doFinal(h, 0);
byte[] s = new byte[SCALAR_BYTES];
pruneScalar(h, 0, s);
byte[] pk = new byte[POINT_BYTES];
scalarMultBaseEncoded(s, pk, 0);
implSign(d, h, s, pk, 0, ctx, phflag, m, mOff, mLen, sig, sigOff);
}
private static void implSign(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte phflag,
byte[] m, int mOff, int mLen, byte[] sig, int sigOff)
{
if (!checkContextVar(ctx, phflag))
{
throw new IllegalArgumentException("ctx");
}
Digest d = createDigest();
byte[] h = new byte[64];
d.update(sk, skOff, SECRET_KEY_SIZE);
d.doFinal(h, 0);
byte[] s = new byte[SCALAR_BYTES];
pruneScalar(h, 0, s);
implSign(d, h, s, pk, pkOff, ctx, phflag, m, mOff, mLen, sig, sigOff);
}
private static boolean implVerify(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte phflag, byte[] m,
int mOff, int mLen)
{
if (!checkContextVar(ctx, phflag))
{
throw new IllegalArgumentException("ctx");
}
byte[] R = copy(sig, sigOff, POINT_BYTES);
byte[] S = copy(sig, sigOff + POINT_BYTES, SCALAR_BYTES);
byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE);
if (!checkPointVar(R))
{
return false;
}
int[] nS = new int[SCALAR_INTS];
if (!Scalar25519.checkVar(S, nS))
{
return false;
}
if (!checkPointFullVar(A))
return false;
PointAffine pR = new PointAffine();
if (!decodePointVar(R, true, pR))
{
return false;
}
PointAffine pA = new PointAffine();
if (!decodePointVar(A, true, pA))
{
return false;
}
Digest d = createDigest();
byte[] h = new byte[64];
if (ctx != null)
{
dom2(d, phflag, ctx);
}
d.update(R, 0, POINT_BYTES);
d.update(A, 0, POINT_BYTES);
d.update(m, mOff, mLen);
d.doFinal(h, 0);
byte[] k = Scalar25519.reduce512(h);
int[] nA = new int[SCALAR_INTS];
Scalar25519.decode(k, nA);
int[] v0 = new int[4];
int[] v1 = new int[4];
Scalar25519.reduceBasisVar(nA, v0, v1);
Scalar25519.multiply128Var(nS, v1, nS);
PointAccum pZ = new PointAccum();
scalarMultStraus128Var(nS, v0, pA, v1, pR, pZ);
return normalizeToNeutralElementVar(pZ);
}
private static boolean implVerify(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] ctx, byte phflag,
byte[] m, int mOff, int mLen)
{
if (!checkContextVar(ctx, phflag))
{
throw new IllegalArgumentException("ctx");
}
byte[] R = copy(sig, sigOff, POINT_BYTES);
byte[] S = copy(sig, sigOff + POINT_BYTES, SCALAR_BYTES);
if (!checkPointVar(R))
{
return false;
}
int[] nS = new int[SCALAR_INTS];
if (!Scalar25519.checkVar(S, nS))
{
return false;
}
PointAffine pR = new PointAffine();
if (!decodePointVar(R, true, pR))
{
return false;
}
PointAffine pA = new PointAffine();
F.negate(publicPoint.data, pA.x);
F.copy(publicPoint.data, F.SIZE, pA.y, 0);
byte[] A = new byte[PUBLIC_KEY_SIZE];
encodePublicPoint(publicPoint, A, 0);
Digest d = createDigest();
byte[] h = new byte[64];
if (ctx != null)
{
dom2(d, phflag, ctx);
}
d.update(R, 0, POINT_BYTES);
d.update(A, 0, POINT_BYTES);
d.update(m, mOff, mLen);
d.doFinal(h, 0);
byte[] k = Scalar25519.reduce512(h);
int[] nA = new int[SCALAR_INTS];
Scalar25519.decode(k, nA);
int[] v0 = new int[4];
int[] v1 = new int[4];
Scalar25519.reduceBasisVar(nA, v0, v1);
Scalar25519.multiply128Var(nS, v1, nS);
PointAccum pZ = new PointAccum();
scalarMultStraus128Var(nS, v0, pA, v1, pR, pZ);
return normalizeToNeutralElementVar(pZ);
}
private static void invertDoubleZs(PointExtended[] points)
{
int count = points.length;
int[] cs = F.createTable(count);
int[] u = F.create();
F.copy(points[0].z, 0, u, 0);
F.copy(u, 0, cs, 0);
int i = 0;
while (++i < count)
{
F.mul(u, points[i].z, u);
F.copy(u, 0, cs, i * F.SIZE);
}
F.add(u, u, u);
F.invVar(u, u);
--i;
int[] t = F.create();
while (i > 0)
{
int j = i--;
F.copy(cs, i * F.SIZE, t, 0);
F.mul(t, u, t);
F.mul(u, points[j].z, u);
F.copy(t, 0, points[j].z, 0);
}
F.copy(u, 0, points[0].z, 0);
}
private static void normalizeToAffine(PointAccum p, PointAffine r)
{
F.inv(p.z, r.y);
F.mul(r.y, p.x, r.x);
F.mul(r.y, p.y, r.y);
F.normalize(r.x);
F.normalize(r.y);
}
private static boolean normalizeToNeutralElementVar(PointAccum p)
{
F.normalize(p.x);
F.normalize(p.y);
F.normalize(p.z);
return F.isZeroVar(p.x) && !F.isZeroVar(p.y) && F.areEqualVar(p.y, p.z);
}
private static void pointAdd(PointExtended p, PointExtended q, PointExtended r, PointTemp t)
{
// p may ref the same point as r (or q), but q may not ref the same point as r.
// assert q != r;
int[] a = r.x;
int[] b = r.y;
int[] c = t.r0;
int[] d = t.r1;
int[] e = a;
int[] f = c;
int[] g = d;
int[] h = b;
F.apm(p.y, p.x, b, a);
F.apm(q.y, q.x, d, c);
F.mul(a, c, a);
F.mul(b, d, b);
F.mul(p.t, q.t, c);
F.mul(c, C_d2, c);
F.add(p.z, p.z, d);
F.mul(d, q.z, d);
F.apm(b, a, h, e);
F.apm(d, c, g, f);
F.mul(e, h, r.t);
F.mul(f, g, r.z);
F.mul(e, f, r.x);
F.mul(h, g, r.y);
}
private static void pointAdd(PointPrecomp p, PointAccum r, PointTemp t)
{
int[] a = r.x;
int[] b = r.y;
int[] c = t.r0;
int[] e = r.u;
int[] f = a;
int[] g = b;
int[] h = r.v;
F.apm(r.y, r.x, b, a);
F.mul(a, p.ymx_h, a);
F.mul(b, p.ypx_h, b);
F.mul(r.u, r.v, c);
F.mul(c, p.xyd, c);
F.apm(b, a, h, e);
F.apm(r.z, c, g, f);
F.mul(f, g, r.z);
F.mul(f, e, r.x);
F.mul(g, h, r.y);
}
private static void pointAdd(PointPrecompZ p, PointAccum r, PointTemp t)
{
int[] a = r.x;
int[] b = r.y;
int[] c = t.r0;
int[] d = r.z;
int[] e = r.u;
int[] f = a;
int[] g = b;
int[] h = r.v;
F.apm(r.y, r.x, b, a);
F.mul(a, p.ymx_h, a);
F.mul(b, p.ypx_h, b);
F.mul(r.u, r.v, c);
F.mul(c, p.xyd, c);
F.mul(r.z, p.z, d);
F.apm(b, a, h, e);
F.apm(d, c, g, f);
F.mul(f, g, r.z);
F.mul(f, e, r.x);
F.mul(g, h, r.y);
}
private static void pointAddVar(boolean negate, PointPrecomp p, PointAccum r, PointTemp t)
{
int[] a = r.x;
int[] b = r.y;
int[] c = t.r0;
int[] e = r.u;
int[] f = a;
int[] g = b;
int[] h = r.v;
int[] na, nb;
if (negate)
{
na = b; nb = a;
}
else
{
na = a; nb = b;
}
int[] nf = na, ng = nb;
F.apm(r.y, r.x, b, a);
F.mul(na, p.ymx_h, na);
F.mul(nb, p.ypx_h, nb);
F.mul(r.u, r.v, c);
F.mul(c, p.xyd, c);
F.apm(b, a, h, e);
F.apm(r.z, c, ng, nf);
F.mul(f, g, r.z);
F.mul(f, e, r.x);
F.mul(g, h, r.y);
}
private static void pointAddVar(boolean negate, PointPrecompZ p, PointAccum r, PointTemp t)
{
int[] a = r.x;
int[] b = r.y;
int[] c = t.r0;
int[] d = r.z;
int[] e = r.u;
int[] f = a;
int[] g = b;
int[] h = r.v;
int[] na, nb;
if (negate)
{
na = b; nb = a;
}
else
{
na = a; nb = b;
}
int[] nf = na, ng = nb;
F.apm(r.y, r.x, b, a);
F.mul(na, p.ymx_h, na);
F.mul(nb, p.ypx_h, nb);
F.mul(r.u, r.v, c);
F.mul(c, p.xyd, c);
F.mul(r.z, p.z, d);
F.apm(b, a, h, e);
F.apm(d, c, ng, nf);
F.mul(f, g, r.z);
F.mul(f, e, r.x);
F.mul(g, h, r.y);
}
private static void pointCopy(PointAccum p, PointExtended r)
{
F.copy(p.x, 0, r.x, 0);
F.copy(p.y, 0, r.y, 0);
F.copy(p.z, 0, r.z, 0);
F.mul(p.u, p.v, r.t);
}
private static void pointCopy(PointAffine p, PointExtended r)
{
F.copy(p.x, 0, r.x, 0);
F.copy(p.y, 0, r.y, 0);
F.one(r.z);
F.mul(p.x, p.y, r.t);
}
private static void pointCopy(PointExtended p, PointPrecompZ r)
{
// To avoid halving x and y, we double t and z instead.
F.apm(p.y, p.x, r.ypx_h, r.ymx_h);
F.mul(p.t, C_d2, r.xyd);
F.add(p.z, p.z, r.z);
}
private static void pointDouble(PointAccum r)
{
int[] a = r.x;
int[] b = r.y;
int[] c = r.z;
int[] e = r.u;
int[] f = a;
int[] g = b;
int[] h = r.v;
F.add(r.x, r.y, e);
F.sqr(r.x, a);
F.sqr(r.y, b);
F.sqr(r.z, c);
F.add(c, c, c);
F.apm(a, b, h, g);
F.sqr(e, e);
F.sub(h, e, e);
F.add(c, g, f);
F.carry(f); // Probably unnecessary, but keep until better bounds analysis available
F.mul(f, g, r.z);
F.mul(f, e, r.x);
F.mul(g, h, r.y);
}
private static void pointLookup(int block, int index, PointPrecomp p)
{
// assert 0 <= block && block < PRECOMP_BLOCKS;
// assert 0 <= index && index < PRECOMP_POINTS;
int off = block * PRECOMP_POINTS * 3 * F.SIZE;
for (int i = 0; i < PRECOMP_POINTS; ++i)
{
int cond = ((i ^ index) - 1) >> 31;
F.cmov(cond, PRECOMP_BASE_COMB, off, p.ymx_h, 0); off += F.SIZE;
F.cmov(cond, PRECOMP_BASE_COMB, off, p.ypx_h, 0); off += F.SIZE;
F.cmov(cond, PRECOMP_BASE_COMB, off, p.xyd, 0); off += F.SIZE;
}
}
private static void pointLookupZ(int[] x, int n, int[] table, PointPrecompZ r)
{
// TODO This method is currently hard-coded to 4-bit windows and 8 precomputed points
int w = getWindow4(x, n);
int sign = (w >>> (4 - 1)) ^ 1;
int abs = (w ^ -sign) & 7;
// assert sign == 0 || sign == 1;
// assert 0 <= abs && abs < 8;
for (int i = 0, off = 0; i < 8; ++i)
{
int cond = ((i ^ abs) - 1) >> 31;
F.cmov(cond, table, off, r.ymx_h, 0); off += F.SIZE;
F.cmov(cond, table, off, r.ypx_h, 0); off += F.SIZE;
F.cmov(cond, table, off, r.xyd , 0); off += F.SIZE;
F.cmov(cond, table, off, r.z , 0); off += F.SIZE;
}
F.cswap(sign, r.ymx_h, r.ypx_h);
F.cnegate(sign, r.xyd);
}
private static void pointPrecompute(PointAffine p, PointExtended[] points, int pointsOff, int pointsLen,
PointTemp t)
{
// assert pointsLen > 0;
pointCopy(p, points[pointsOff] = new PointExtended());
PointExtended d = new PointExtended();
pointAdd(points[pointsOff], points[pointsOff], d, t);
for (int i = 1; i < pointsLen; ++i)
{
pointAdd(points[pointsOff + i - 1], d, points[pointsOff + i] = new PointExtended(), t);
}
}
private static int[] pointPrecomputeZ(PointAffine p, int count, PointTemp t)
{
// assert count > 0;
PointExtended q = new PointExtended();
pointCopy(p, q);
PointExtended d = new PointExtended();
pointAdd(q, q, d, t);
PointPrecompZ r = new PointPrecompZ();
int[] table = F.createTable(count * 4);
int off = 0;
int i = 0;
for (;;)
{
pointCopy(q, r);
F.copy(r.ymx_h, 0, table, off); off += F.SIZE;
F.copy(r.ypx_h, 0, table, off); off += F.SIZE;
F.copy(r.xyd , 0, table, off); off += F.SIZE;
F.copy(r.z , 0, table, off); off += F.SIZE;
if (++i == count)
{
break;
}
pointAdd(q, d, q, t);
}
return table;
}
private static void pointPrecomputeZ(PointAffine p, PointPrecompZ[] points, int count, PointTemp t)
{
// assert count > 0;
PointExtended q = new PointExtended();
pointCopy(p, q);
PointExtended d = new PointExtended();
pointAdd(q, q, d, t);
int i = 0;
for (;;)
{
PointPrecompZ r = points[i] = new PointPrecompZ();
pointCopy(q, r);
if (++i == count)
{
break;
}
pointAdd(q, d, q, t);
}
}
private static void pointSetNeutral(PointAccum p)
{
F.zero(p.x);
F.one(p.y);
F.one(p.z);
F.zero(p.u);
F.one(p.v);
}
public static void precompute()
{
synchronized (PRECOMP_LOCK)
{
if (PRECOMP_BASE_COMB != null)
{
return;
}
int wnafPoints = 1 << (WNAF_WIDTH_BASE - 2);
int combPoints = PRECOMP_BLOCKS * PRECOMP_POINTS;
int totalPoints = wnafPoints * 2 + combPoints;
PointExtended[] points = new PointExtended[totalPoints];
PointTemp t = new PointTemp();
PointAffine B = new PointAffine();
F.copy(B_x, 0, B.x, 0);
F.copy(B_y, 0, B.y, 0);
pointPrecompute(B, points, 0, wnafPoints, t);
PointAffine B128 = new PointAffine();
F.copy(B128_x, 0, B128.x, 0);
F.copy(B128_y, 0, B128.y, 0);
pointPrecompute(B128, points, wnafPoints, wnafPoints, t);
PointAccum p = new PointAccum();
F.copy(B_x, 0, p.x, 0);
F.copy(B_y, 0, p.y, 0);
F.one(p.z);
F.copy(p.x, 0, p.u, 0);
F.copy(p.y, 0, p.v, 0);
int pointsIndex = wnafPoints * 2;
PointExtended[] toothPowers = new PointExtended[PRECOMP_TEETH];
for (int tooth = 0; tooth < PRECOMP_TEETH; ++tooth)
{
toothPowers[tooth] = new PointExtended();
}
PointExtended u = new PointExtended();
for (int block = 0; block < PRECOMP_BLOCKS; ++block)
{
PointExtended sum = points[pointsIndex++] = new PointExtended();
for (int tooth = 0; tooth < PRECOMP_TEETH; ++tooth)
{
if (tooth == 0)
{
pointCopy(p, sum);
}
else
{
pointCopy(p, u);
pointAdd(sum, u, sum, t);
}
pointDouble(p);
pointCopy(p, toothPowers[tooth]);
if (block + tooth != PRECOMP_BLOCKS + PRECOMP_TEETH - 2)
{
for (int spacing = 1; spacing < PRECOMP_SPACING; ++spacing)
{
pointDouble(p);
}
}
}
F.negate(sum.x, sum.x);
F.negate(sum.t, sum.t);
for (int tooth = 0; tooth < (PRECOMP_TEETH - 1); ++tooth)
{
int size = 1 << tooth;
for (int j = 0; j < size; ++j, ++pointsIndex)
{
points[pointsIndex] = new PointExtended();
pointAdd(points[pointsIndex - size], toothPowers[tooth], points[pointsIndex], t);
}
}
}
// assert pointsIndex == totalPoints;
// Set each z coordinate to 1/(2.z) to avoid calculating halves of x, y in the following code
invertDoubleZs(points);
PRECOMP_BASE_WNAF = new PointPrecomp[wnafPoints];
for (int i = 0; i < wnafPoints; ++i)
{
PointExtended q = points[i];
PointPrecomp r = PRECOMP_BASE_WNAF[i] = new PointPrecomp();
// Calculate x/2 and y/2 (because the z value holds half the inverse; see above).
F.mul(q.x, q.z, q.x);
F.mul(q.y, q.z, q.y);
// y/2 +/- x/2
F.apm(q.y, q.x, r.ypx_h, r.ymx_h);
// x/2 * y/2 * (4.d) == x.y.d
F.mul(q.x, q.y, r.xyd);
F.mul(r.xyd, C_d4, r.xyd);
F.normalize(r.ymx_h);
F.normalize(r.ypx_h);
F.normalize(r.xyd);
}
PRECOMP_BASE128_WNAF = new PointPrecomp[wnafPoints];
for (int i = 0; i < wnafPoints; ++i)
{
PointExtended q = points[wnafPoints + i];
PointPrecomp r = PRECOMP_BASE128_WNAF[i] = new PointPrecomp();
// Calculate x/2 and y/2 (because the z value holds half the inverse; see above).
F.mul(q.x, q.z, q.x);
F.mul(q.y, q.z, q.y);
// y/2 +/- x/2
F.apm(q.y, q.x, r.ypx_h, r.ymx_h);
// x/2 * y/2 * (4.d) == x.y.d
F.mul(q.x, q.y, r.xyd);
F.mul(r.xyd, C_d4, r.xyd);
F.normalize(r.ymx_h);
F.normalize(r.ypx_h);
F.normalize(r.xyd);
}
PRECOMP_BASE_COMB = F.createTable(combPoints * 3);
PointPrecomp s = new PointPrecomp();
int off = 0;
for (int i = wnafPoints * 2; i < totalPoints; ++i)
{
PointExtended q = points[i];
// Calculate x/2 and y/2 (because the z value holds half the inverse; see above).
F.mul(q.x, q.z, q.x);
F.mul(q.y, q.z, q.y);
// y/2 +/- x/2
F.apm(q.y, q.x, s.ypx_h, s.ymx_h);
// x/2 * y/2 * (4.d) == x.y.d
F.mul(q.x, q.y, s.xyd);
F.mul(s.xyd, C_d4, s.xyd);
F.normalize(s.ymx_h);
F.normalize(s.ypx_h);
F.normalize(s.xyd);
F.copy(s.ymx_h, 0, PRECOMP_BASE_COMB, off); off += F.SIZE;
F.copy(s.ypx_h, 0, PRECOMP_BASE_COMB, off); off += F.SIZE;
F.copy(s.xyd , 0, PRECOMP_BASE_COMB, off); off += F.SIZE;
}
// assert off == PRECOMP_BASE_COMB.length;
}
}
private static void pruneScalar(byte[] n, int nOff, byte[] r)
{
System.arraycopy(n, nOff, r, 0, SCALAR_BYTES);
r[0] &= 0xF8;
r[SCALAR_BYTES - 1] &= 0x7F;
r[SCALAR_BYTES - 1] |= 0x40;
}
private static void scalarMult(byte[] k, PointAffine p, PointAccum r)
{
int[] n = new int[SCALAR_INTS];
Scalar25519.decode(k, n);
Scalar25519.toSignedDigits(256, n);
PointPrecompZ q = new PointPrecompZ();
PointTemp t = new PointTemp();
int[] table = pointPrecomputeZ(p, 8, t);
pointSetNeutral(r);
int w = 63;
for (;;)
{
pointLookupZ(n, w, table, q);
pointAdd(q, r, t);
if (--w < 0)
{
break;
}
for (int i = 0; i < 4; ++i)
{
pointDouble(r);
}
}
}
private static void scalarMultBase(byte[] k, PointAccum r)
{
// Equivalent (but much slower)
// PointAffine p = new PointAffine();
// F.copy(B_x, 0, p.x, 0);
// F.copy(B_y, 0, p.y, 0);
// scalarMult(k, p, r);
precompute();
int[] n = new int[SCALAR_INTS];
Scalar25519.decode(k, n);
Scalar25519.toSignedDigits(PRECOMP_RANGE, n);
groupCombBits(n);
PointPrecomp p = new PointPrecomp();
PointTemp t = new PointTemp();
pointSetNeutral(r);
int resultSign = 0;
int cOff = (PRECOMP_SPACING - 1) * PRECOMP_TEETH;
for (;;)
{
for (int block = 0; block < PRECOMP_BLOCKS; ++block)
{
int w = n[block] >>> cOff;
int sign = (w >>> (PRECOMP_TEETH - 1)) & 1;
int abs = (w ^ -sign) & PRECOMP_MASK;
// assert sign == 0 || sign == 1;
// assert 0 <= abs && abs < PRECOMP_POINTS;
pointLookup(block, abs, p);
F.cnegate(resultSign ^ sign, r.x);
F.cnegate(resultSign ^ sign, r.u);
resultSign = sign;
pointAdd(p, r, t);
}
if ((cOff -= PRECOMP_TEETH) < 0)
{
break;
}
pointDouble(r);
}
F.cnegate(resultSign, r.x);
F.cnegate(resultSign, r.u);
}
private static void scalarMultBaseEncoded(byte[] k, byte[] r, int rOff)
{
PointAccum p = new PointAccum();
scalarMultBase(k, p);
if (0 == encodeResult(p, r, rOff))
{
throw new IllegalStateException();
}
}
/**
* NOTE: Only for use by X25519
*/
public static void scalarMultBaseYZ(X25519.Friend friend, byte[] k, int kOff, int[] y, int[] z)
{
if (null == friend)
{
throw new NullPointerException("This method is only for use by X25519");
}
byte[] n = new byte[SCALAR_BYTES];
pruneScalar(k, kOff, n);
PointAccum p = new PointAccum();
scalarMultBase(n, p);
if (0 == checkPoint(p))
{
throw new IllegalStateException();
}
F.copy(p.y, 0, y, 0);
F.copy(p.z, 0, z, 0);
}
private static void scalarMultOrderVar(PointAffine p, PointAccum r)
{
byte[] ws_p = new byte[253];
// NOTE: WNAF_WIDTH_128 because of the special structure of the order
Scalar25519.getOrderWnafVar(WNAF_WIDTH_128, ws_p);
int count = 1 << (WNAF_WIDTH_128 - 2);
PointPrecompZ[] tp = new PointPrecompZ[count];
PointTemp t = new PointTemp();
pointPrecomputeZ(p, tp, count, t);
pointSetNeutral(r);
for (int bit = 252;;)
{
int wp = ws_p[bit];
if (wp != 0)
{
int index = (wp >> 1) ^ (wp >> 31);
pointAddVar(wp < 0, tp[index], r, t);
}
if (--bit < 0)
{
break;
}
pointDouble(r);
}
}
private static void scalarMultStraus128Var(int[] nb, int[] np, PointAffine p, int[] nq, PointAffine q, PointAccum r)
{
// assert nb.length == SCALAR_INTS;
// assert nb[SCALAR_INTS - 1] >>> 29 == 0;
// assert np.length == 4;
// assert nq.length == 4;
precompute();
byte[] ws_b = new byte[256];
byte[] ws_p = new byte[128];
byte[] ws_q = new byte[128];
Wnaf.getSignedVar(nb, WNAF_WIDTH_BASE, ws_b);
Wnaf.getSignedVar(np, WNAF_WIDTH_128, ws_p);
Wnaf.getSignedVar(nq, WNAF_WIDTH_128, ws_q);
int count = 1 << (WNAF_WIDTH_128 - 2);
PointPrecompZ[] tp = new PointPrecompZ[count];
PointPrecompZ[] tq = new PointPrecompZ[count];
PointTemp t = new PointTemp();
pointPrecomputeZ(p, tp, count, t);
pointPrecomputeZ(q, tq, count, t);
pointSetNeutral(r);
int bit = 128;
while (--bit >= 0)
{
if ((ws_b[bit] | ws_b[128 + bit] | ws_p[bit] | ws_q[bit]) != 0)
{
break;
}
}
for (; bit >= 0; --bit)
{
int wb = ws_b[bit];
if (wb != 0)
{
int index = (wb >> 1) ^ (wb >> 31);
pointAddVar(wb < 0, PRECOMP_BASE_WNAF[index], r, t);
}
int wb128 = ws_b[128 + bit];
if (wb128 != 0)
{
int index = (wb128 >> 1) ^ (wb128 >> 31);
pointAddVar(wb128 < 0, PRECOMP_BASE128_WNAF[index], r, t);
}
int wp = ws_p[bit];
if (wp != 0)
{
int index = (wp >> 1) ^ (wp >> 31);
pointAddVar(wp < 0, tp[index], r, t);
}
int wq = ws_q[bit];
if (wq != 0)
{
int index = (wq >> 1) ^ (wq >> 31);
pointAddVar(wq < 0, tq[index], r, t);
}
pointDouble(r);
}
// NOTE: Together with the final pointDouble of the loop, this clears the cofactor of 8
pointDouble(r);
pointDouble(r);
}
public static void sign(byte[] sk, int skOff, byte[] m, int mOff, int mLen, byte[] sig, int sigOff)
{
byte[] ctx = null;
byte phflag = 0x00;
implSign(sk, skOff, ctx, phflag, m, mOff, mLen, sig, sigOff);
}
public static void sign(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] m, int mOff, int mLen, byte[] sig,
int sigOff)
{
byte[] ctx = null;
byte phflag = 0x00;
implSign(sk, skOff, pk, pkOff, ctx, phflag, m, mOff, mLen, sig, sigOff);
}
public static void sign(byte[] sk, int skOff, byte[] ctx, byte[] m, int mOff, int mLen, byte[] sig, int sigOff)
{
byte phflag = 0x00;
implSign(sk, skOff, ctx, phflag, m, mOff, mLen, sig, sigOff);
}
public static void sign(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte[] m, int mOff, int mLen,
byte[] sig, int sigOff)
{
byte phflag = 0x00;
implSign(sk, skOff, pk, pkOff, ctx, phflag, m, mOff, mLen, sig, sigOff);
}
public static void signPrehash(byte[] sk, int skOff, byte[] ctx, byte[] ph, int phOff, byte[] sig, int sigOff)
{
byte phflag = 0x01;
implSign(sk, skOff, ctx, phflag, ph, phOff, PREHASH_SIZE, sig, sigOff);
}
public static void signPrehash(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte[] ph, int phOff,
byte[] sig, int sigOff)
{
byte phflag = 0x01;
implSign(sk, skOff, pk, pkOff, ctx, phflag, ph, phOff, PREHASH_SIZE, sig, sigOff);
}
public static void signPrehash(byte[] sk, int skOff, byte[] ctx, Digest ph, byte[] sig, int sigOff)
{
byte[] m = new byte[PREHASH_SIZE];
if (PREHASH_SIZE != ph.doFinal(m, 0))
{
throw new IllegalArgumentException("ph");
}
byte phflag = 0x01;
implSign(sk, skOff, ctx, phflag, m, 0, m.length, sig, sigOff);
}
public static void signPrehash(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, Digest ph, byte[] sig,
int sigOff)
{
byte[] m = new byte[PREHASH_SIZE];
if (PREHASH_SIZE != ph.doFinal(m, 0))
{
throw new IllegalArgumentException("ph");
}
byte phflag = 0x01;
implSign(sk, skOff, pk, pkOff, ctx, phflag, m, 0, m.length, sig, sigOff);
}
public static boolean validatePublicKeyFull(byte[] pk, int pkOff)
{
byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE);
if (!checkPointFullVar(A))
{
return false;
}
PointAffine pA = new PointAffine();
if (!decodePointVar(A, false, pA))
{
return false;
}
return checkPointOrderVar(pA);
}
public static PublicPoint validatePublicKeyFullExport(byte[] pk, int pkOff)
{
byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE);
if (!checkPointFullVar(A))
{
return null;
}
PointAffine pA = new PointAffine();
if (!decodePointVar(A, false, pA))
{
return null;
}
if (!checkPointOrderVar(pA))
{
return null;
}
return exportPoint(pA);
}
public static boolean validatePublicKeyPartial(byte[] pk, int pkOff)
{
byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE);
if (!checkPointFullVar(A))
{
return false;
}
PointAffine pA = new PointAffine();
return decodePointVar(A, false, pA);
}
public static PublicPoint validatePublicKeyPartialExport(byte[] pk, int pkOff)
{
byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE);
if (!checkPointFullVar(A))
{
return null;
}
PointAffine pA = new PointAffine();
if (!decodePointVar(A, false, pA))
{
return null;
}
return exportPoint(pA);
}
public static boolean verify(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] m, int mOff, int mLen)
{
byte[] ctx = null;
byte phflag = 0x00;
return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, m, mOff, mLen);
}
public static boolean verify(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] m, int mOff, int mLen)
{
byte[] ctx = null;
byte phflag = 0x00;
return implVerify(sig, sigOff, publicPoint, ctx, phflag, m, mOff, mLen);
}
public static boolean verify(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte[] m, int mOff, int mLen)
{
byte phflag = 0x00;
return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, m, mOff, mLen);
}
public static boolean verify(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] ctx, byte[] m, int mOff,
int mLen)
{
byte phflag = 0x00;
return implVerify(sig, sigOff, publicPoint, ctx, phflag, m, mOff, mLen);
}
public static boolean verifyPrehash(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte[] ph, int phOff)
{
byte phflag = 0x01;
return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, ph, phOff, PREHASH_SIZE);
}
public static boolean verifyPrehash(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] ctx, byte[] ph,
int phOff)
{
byte phflag = 0x01;
return implVerify(sig, sigOff, publicPoint, ctx, phflag, ph, phOff, PREHASH_SIZE);
}
public static boolean verifyPrehash(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, Digest ph)
{
byte[] m = new byte[PREHASH_SIZE];
if (PREHASH_SIZE != ph.doFinal(m, 0))
{
throw new IllegalArgumentException("ph");
}
byte phflag = 0x01;
return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, m, 0, m.length);
}
public static boolean verifyPrehash(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] ctx, Digest ph)
{
byte[] m = new byte[PREHASH_SIZE];
if (PREHASH_SIZE != ph.doFinal(m, 0))
{
throw new IllegalArgumentException("ph");
}
byte phflag = 0x01;
return implVerify(sig, sigOff, publicPoint, ctx, phflag, m, 0, m.length);
}
}