org.bouncycastle.pqc.crypto.cmce.GF12 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-jdk15to18 Show documentation
Show all versions of bcprov-ext-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.8 and up. Note: this package includes the NTRU encryption algorithms.
package org.bouncycastle.pqc.crypto.cmce;
import org.bouncycastle.math.raw.Interleave;
final class GF12
extends GF
{
GF12()
{
}
protected void gf_mul_poly(int length, int[] poly, short[] out, short[] left, short[] right, int[] temp)
{
temp[0] = gf_mul_ext(left[0], right[0]);
for (int i = 1; i < length; i++)
{
temp[i + i - 1] = 0;
short left_i = left[i];
short right_i = right[i];
for (int j = 0; j < i; j++)
{
temp[i + j] ^= gf_mul_ext_par(left_i, right[j], left[j], right_i);
}
temp[i + i] = gf_mul_ext(left_i, right_i);
}
for (int i = (length - 1) * 2; i >= length; i--)
{
int temp_i = temp[i];
for (int j = 0; j < poly.length - 1; j++)
{
temp[i - length + poly[j]] ^= temp_i;
}
{
// NOTE: Safe because gf_reduce allows up to 24 bits, but gf_mul_ext(_par) only produces 23.
temp[i - length] ^= temp_i << 1;
}
}
for (int i = 0; i < length; ++i)
{
out[i] = gf_reduce(temp[i]);
}
}
protected void gf_sqr_poly(int length, int[] poly, short[] out, short[] input, int[] temp)
{
temp[0] = gf_sq_ext(input[0]);
for (int i = 1; i < length; i++)
{
temp[i + i - 1] = 0;
temp[i + i] = gf_sq_ext(input[i]);
}
for (int i = (length - 1) * 2; i >= length; i--)
{
int temp_i = temp[i];
for (int j = 0; j < poly.length -1; j++)
{
temp[i - length + poly[j]] ^= temp_i;
}
{
// NOTE: Safe because gf_reduce allows up to 24 bits, but gf_sq_ext only produces 23.
temp[i - length] ^= temp_i << 1;
}
}
for (int i = 0; i < length; ++i)
{
out[i] = gf_reduce(temp[i]);
}
}
protected short gf_frac(short den, short num)
{
return gf_mul(gf_inv(den), num);
}
protected short gf_inv(short input)
{
short tmp_11;
short tmp_1111;
short out = input;
out = gf_sq(out);
tmp_11 = gf_mul(out, input); // 11
out = gf_sq(tmp_11);
out = gf_sq(out);
tmp_1111 = gf_mul(out, tmp_11); // 1111
out = gf_sq(tmp_1111);
out = gf_sq(out);
out = gf_sq(out);
out = gf_sq(out);
out = gf_mul(out, tmp_1111); // 11111111
out = gf_sq(out);
out = gf_sq(out);
out = gf_mul(out, tmp_11); // 1111111111
out = gf_sq(out);
out = gf_mul(out, input); // 11111111111
return gf_sq(out); // 111111111110
}
protected short gf_mul(short left, short right)
{
int x = left;
int y = right;
int z = x * (y & 1);
for (int i = 1; i < 12; i++)
{
z ^= x * (y & (1 << i));
}
return gf_reduce(z);
}
protected int gf_mul_ext(short left, short right)
{
int x = left, y = right;
int z = x * (y & 1);
for (int i = 1; i < 12; i++)
{
z ^= x * (y & (1 << i));
}
return z;
}
private int gf_mul_ext_par(short left0, short right0, short left1, short right1)
{
int x0 = left0, y0 = right0, x1 = left1, y1 = right1;
int z0 = x0 * (y0 & 1);
int z1 = x1 * (y1 & 1);
for (int i = 1; i < 12; i++)
{
z0 ^= x0 * (y0 & (1 << i));
z1 ^= x1 * (y1 & (1 << i));
}
return z0 ^ z1;
}
protected short gf_reduce(int x)
{
// assert (x >>> 24) == 0;
int u0 = x & 0x00000FFF;
int u1 = x >>> 12;
int u2 = (x & 0x001FF000) >>> 9;
int u3 = (x & 0x00E00000) >>> 18;
int u4 = x >>> 21;
return (short)(u0 ^ u1 ^ u2 ^ u3 ^ u4);
}
protected short gf_sq(short input)
{
int z = Interleave.expand16to32(input);
return gf_reduce(z);
}
protected int gf_sq_ext(short input)
{
return Interleave.expand16to32(input);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy