org.bouncycastle.pqc.jcajce.provider.mceliece.BCMcEliecePrivateKey Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-ext-jdk15to18 Show documentation
Show all versions of bcprov-ext-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.8 and up. Note: this package includes the NTRU encryption algorithms.
package org.bouncycastle.pqc.jcajce.provider.mceliece;
import java.io.IOException;
import java.security.PrivateKey;
import org.bouncycastle.asn1.pkcs.PrivateKeyInfo;
import org.bouncycastle.asn1.x509.AlgorithmIdentifier;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.params.AsymmetricKeyParameter;
import org.bouncycastle.pqc.asn1.McEliecePrivateKey;
import org.bouncycastle.pqc.asn1.PQCObjectIdentifiers;
import org.bouncycastle.pqc.legacy.crypto.mceliece.McElieceKeyPairGenerator;
import org.bouncycastle.pqc.legacy.crypto.mceliece.McEliecePrivateKeyParameters;
import org.bouncycastle.pqc.legacy.math.linearalgebra.GF2Matrix;
import org.bouncycastle.pqc.legacy.math.linearalgebra.GF2mField;
import org.bouncycastle.pqc.legacy.math.linearalgebra.Permutation;
import org.bouncycastle.pqc.legacy.math.linearalgebra.PolynomialGF2mSmallM;
/**
* This class implements a McEliece private key and is usually instantiated by
* the {@link McElieceKeyPairGenerator} or {@link McElieceKeyFactorySpi}.
*/
public class BCMcEliecePrivateKey
implements CipherParameters, PrivateKey
{
private static final long serialVersionUID = 1L;
private McEliecePrivateKeyParameters params;
public BCMcEliecePrivateKey(McEliecePrivateKeyParameters params)
{
this.params = params;
}
/**
* Return the name of the algorithm.
*
* @return "McEliece"
*/
public String getAlgorithm()
{
return "McEliece";
}
/**
* @return the length of the code
*/
public int getN()
{
return params.getN();
}
/**
* @return the dimension of the code
*/
public int getK()
{
return params.getK();
}
/**
* @return the finite field
*/
public GF2mField getField()
{
return params.getField();
}
/**
* @return the irreducible Goppa polynomial
*/
public PolynomialGF2mSmallM getGoppaPoly()
{
return params.getGoppaPoly();
}
/**
* @return the k x k random binary non-singular matrix S
*/
public GF2Matrix getSInv()
{
return params.getSInv();
}
/**
* @return the permutation used to generate the systematic check matrix
*/
public Permutation getP1()
{
return params.getP1();
}
/**
* @return the permutation used to compute the public generator matrix
*/
public Permutation getP2()
{
return params.getP2();
}
/**
* @return the canonical check matrix
*/
public GF2Matrix getH()
{
return params.getH();
}
/**
* @return the matrix for computing square roots in (GF(2^m))^t
*/
public PolynomialGF2mSmallM[] getQInv()
{
return params.getQInv();
}
/*
* @return a human readable form of the key
*/
// TODO:
// public String toString()
// {
// String result = " length of the code : " + getN() + Strings.lineSeparator();
// result += " dimension of the code : " + getK() + Strings.lineSeparator();
// result += " irreducible Goppa polynomial: " + getGoppaPoly() + Strings.lineSeparator();
// result += " permutation P1 : " + getP1() + Strings.lineSeparator();
// result += " permutation P2 : " + getP2() + Strings.lineSeparator();
// result += " (k x k)-matrix S^-1 : " + getSInv();
// return result;
// }
/**
* Compare this key with another object.
*
* @param other the other object
* @return the result of the comparison
*/
public boolean equals(Object other)
{
if (!(other instanceof BCMcEliecePrivateKey))
{
return false;
}
BCMcEliecePrivateKey otherKey = (BCMcEliecePrivateKey)other;
return (getN() == otherKey.getN()) && (getK() == otherKey.getK())
&& getField().equals(otherKey.getField())
&& getGoppaPoly().equals(otherKey.getGoppaPoly())
&& getSInv().equals(otherKey.getSInv()) && getP1().equals(otherKey.getP1())
&& getP2().equals(otherKey.getP2());
}
/**
* @return the hash code of this key
*/
public int hashCode()
{
int code = params.getK();
code = code * 37 + params.getN();
code = code * 37 + params.getField().hashCode();
code = code * 37 + params.getGoppaPoly().hashCode();
code = code * 37 + params.getP1().hashCode();
code = code * 37 + params.getP2().hashCode();
return code * 37 + params.getSInv().hashCode();
}
/**
* Return the key data to encode in the SubjectPublicKeyInfo structure.
*
* The ASN.1 definition of the key structure is
*
*
* McEliecePrivateKey ::= SEQUENCE {
* n INTEGER -- length of the code
* k INTEGER -- dimension of the code
* fieldPoly OCTET STRING -- field polynomial defining GF(2ˆm)
* getGoppaPoly() OCTET STRING -- irreducible Goppa polynomial
* sInv OCTET STRING -- matrix Sˆ-1
* p1 OCTET STRING -- permutation P1
* p2 OCTET STRING -- permutation P2
* h OCTET STRING -- canonical check matrix
* qInv SEQUENCE OF OCTET STRING -- matrix used to compute square roots
* }
*
*
* @return the key data to encode in the SubjectPublicKeyInfo structure
*/
public byte[] getEncoded()
{
McEliecePrivateKey privateKey = new McEliecePrivateKey(params.getN(), params.getK(), params.getField(), params.getGoppaPoly(), params.getP1(), params.getP2(), params.getSInv());
PrivateKeyInfo pki;
try
{
AlgorithmIdentifier algorithmIdentifier = new AlgorithmIdentifier(PQCObjectIdentifiers.mcEliece);
pki = new PrivateKeyInfo(algorithmIdentifier, privateKey);
}
catch (IOException e)
{
return null;
}
try
{
byte[] encoded = pki.getEncoded();
return encoded;
}
catch (IOException e)
{
return null;
}
}
public String getFormat()
{
return "PKCS#8";
}
AsymmetricKeyParameter getKeyParams()
{
return params;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy