All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.engines.Salsa20Engine Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.

There is a newer version: 1.79
Show newest version
package org.bouncycastle.crypto.engines;

import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.DataLengthException;
import org.bouncycastle.crypto.MaxBytesExceededException;
import org.bouncycastle.crypto.OutputLengthException;
import org.bouncycastle.crypto.StreamCipher;
import org.bouncycastle.crypto.params.KeyParameter;
import org.bouncycastle.crypto.params.ParametersWithIV;
import org.bouncycastle.crypto.util.Pack;
import org.bouncycastle.util.Strings;

/**
 * Implementation of Daniel J. Bernstein's Salsa20 stream cipher, Snuffle 2005
 */

public class Salsa20Engine
    implements StreamCipher
{
    /** Constants */
    private final static int STATE_SIZE = 16; // 16, 32 bit ints = 64 bytes

    private final static byte[]
        sigma = Strings.toByteArray("expand 32-byte k"),
        tau   = Strings.toByteArray("expand 16-byte k");

    /*
     * variables to hold the state of the engine
     * during encryption and decryption
     */
    private int         index = 0;
    private int[]       engineState = new int[STATE_SIZE]; // state
    private int[]       x = new int[STATE_SIZE] ; // internal buffer
    private byte[]      keyStream   = new byte[STATE_SIZE * 4], // expanded state, 64 bytes
                        workingKey  = null,
                        workingIV   = null;
    private boolean     initialised = false;

    /*
     * internal counter
     */
    private int cW0, cW1, cW2;

    /**
     * initialise a Salsa20 cipher.
     *
     * @param forEncryption whether or not we are for encryption.
     * @param params the parameters required to set up the cipher.
     * @exception IllegalArgumentException if the params argument is
     * inappropriate.
     */
    public void init(
        boolean             forEncryption, 
        CipherParameters     params)
    {
        /* 
        * Salsa20 encryption and decryption is completely
        * symmetrical, so the 'forEncryption' is 
        * irrelevant. (Like 90% of stream ciphers)
        */

        if (!(params instanceof ParametersWithIV))
        {
            throw new IllegalArgumentException("Salsa20 Init parameters must include an IV");
        }

        ParametersWithIV ivParams = (ParametersWithIV) params;

        byte[] iv = ivParams.getIV();

        if (iv == null || iv.length != 8)
        {
            throw new IllegalArgumentException("Salsa20 requires exactly 8 bytes of IV");
        }

        if (!(ivParams.getParameters() instanceof KeyParameter))
        {
            throw new IllegalArgumentException("Salsa20 Init parameters must include a key");
        }

        KeyParameter key = (KeyParameter) ivParams.getParameters();

        workingKey = key.getKey();
        workingIV = iv;

        setKey(workingKey, workingIV);
    }

    public String getAlgorithmName()
    {
        return "Salsa20";
    }

    public byte returnByte(byte in)
    {
        if (limitExceeded())
        {
            throw new MaxBytesExceededException("2^70 byte limit per IV; Change IV");
        }

        if (index == 0)
        {
            generateKeyStream(keyStream);

            if (++engineState[8] == 0)
            {
                ++engineState[9];
            }
        }

        byte out = (byte)(keyStream[index]^in);
        index = (index + 1) & 63;

        return out;
    }

    public void processBytes(
        byte[]     in, 
        int     inOff, 
        int     len, 
        byte[]     out, 
        int     outOff)
    {
        if (!initialised)
        {
            throw new IllegalStateException(getAlgorithmName()+" not initialised");
        }

        if ((inOff + len) > in.length)
        {
            throw new DataLengthException("input buffer too short");
        }

        if ((outOff + len) > out.length)
        {
            throw new OutputLengthException("output buffer too short");
        }

        if (limitExceeded(len))
        {
            throw new MaxBytesExceededException("2^70 byte limit per IV would be exceeded; Change IV");
        }

        for (int i = 0; i < len; i++)
        {
            if (index == 0)
            {
                generateKeyStream(keyStream);

                if (++engineState[8] == 0)
                {
                    ++engineState[9];
                }
            }

            out[i+outOff] = (byte)(keyStream[index]^in[i+inOff]);
            index = (index + 1) & 63;
        }
    }

    public void reset()
    {
        setKey(workingKey, workingIV);
    }

    // Private implementation

    private void setKey(byte[] keyBytes, byte[] ivBytes)
    {
        workingKey = keyBytes;
        workingIV  = ivBytes;

        index = 0;
        resetCounter();
        int offset = 0;
        byte[] constants;

        // Key
        engineState[1] = Pack.littleEndianToInt(workingKey, 0);
        engineState[2] = Pack.littleEndianToInt(workingKey, 4);
        engineState[3] = Pack.littleEndianToInt(workingKey, 8);
        engineState[4] = Pack.littleEndianToInt(workingKey, 12);

        if (workingKey.length == 32)
        {
            constants = sigma;
            offset = 16;
        }
        else
        {
            constants = tau;
        }

        engineState[11] = Pack.littleEndianToInt(workingKey, offset);
        engineState[12] = Pack.littleEndianToInt(workingKey, offset+4);
        engineState[13] = Pack.littleEndianToInt(workingKey, offset+8);
        engineState[14] = Pack.littleEndianToInt(workingKey, offset+12);
        engineState[0 ] = Pack.littleEndianToInt(constants, 0);
        engineState[5 ] = Pack.littleEndianToInt(constants, 4);
        engineState[10] = Pack.littleEndianToInt(constants, 8);
        engineState[15] = Pack.littleEndianToInt(constants, 12);

        // IV
        engineState[6] = Pack.littleEndianToInt(workingIV, 0);
        engineState[7] = Pack.littleEndianToInt(workingIV, 4);
        engineState[8] = engineState[9] = 0;

        initialised = true;
    }

    private void generateKeyStream(byte[] output)
    {
        salsaCore(20, engineState, x);
        Pack.intToLittleEndian(x, output, 0);
    }

    /**
     * Salsa20 function
     *
     * @param   input   input data
     *
     * @return  keystream
     */    
    public static void salsaCore(int rounds, int[] input, int[] x)
    {
        // TODO Exception if rounds odd?

        System.arraycopy(input, 0, x, 0, input.length);

        for (int i = rounds; i > 0; i -= 2)
        {
            x[ 4] ^= rotl((x[ 0]+x[12]), 7);
            x[ 8] ^= rotl((x[ 4]+x[ 0]), 9);
            x[12] ^= rotl((x[ 8]+x[ 4]),13);
            x[ 0] ^= rotl((x[12]+x[ 8]),18);
            x[ 9] ^= rotl((x[ 5]+x[ 1]), 7);
            x[13] ^= rotl((x[ 9]+x[ 5]), 9);
            x[ 1] ^= rotl((x[13]+x[ 9]),13);
            x[ 5] ^= rotl((x[ 1]+x[13]),18);
            x[14] ^= rotl((x[10]+x[ 6]), 7);
            x[ 2] ^= rotl((x[14]+x[10]), 9);
            x[ 6] ^= rotl((x[ 2]+x[14]),13);
            x[10] ^= rotl((x[ 6]+x[ 2]),18);
            x[ 3] ^= rotl((x[15]+x[11]), 7);
            x[ 7] ^= rotl((x[ 3]+x[15]), 9);
            x[11] ^= rotl((x[ 7]+x[ 3]),13);
            x[15] ^= rotl((x[11]+x[ 7]),18);
            x[ 1] ^= rotl((x[ 0]+x[ 3]), 7);
            x[ 2] ^= rotl((x[ 1]+x[ 0]), 9);
            x[ 3] ^= rotl((x[ 2]+x[ 1]),13);
            x[ 0] ^= rotl((x[ 3]+x[ 2]),18);
            x[ 6] ^= rotl((x[ 5]+x[ 4]), 7);
            x[ 7] ^= rotl((x[ 6]+x[ 5]), 9);
            x[ 4] ^= rotl((x[ 7]+x[ 6]),13);
            x[ 5] ^= rotl((x[ 4]+x[ 7]),18);
            x[11] ^= rotl((x[10]+x[ 9]), 7);
            x[ 8] ^= rotl((x[11]+x[10]), 9);
            x[ 9] ^= rotl((x[ 8]+x[11]),13);
            x[10] ^= rotl((x[ 9]+x[ 8]),18);
            x[12] ^= rotl((x[15]+x[14]), 7);
            x[13] ^= rotl((x[12]+x[15]), 9);
            x[14] ^= rotl((x[13]+x[12]),13);
            x[15] ^= rotl((x[14]+x[13]),18);
        }

        for (int i = 0; i < STATE_SIZE; ++i)
        {
            x[i] += input[i];
        }
    }

    /**
     * Rotate left
     *
     * @param   x   value to rotate
     * @param   y   amount to rotate x
     *
     * @return  rotated x
     */
    private static int rotl(int x, int y)
    {
        return (x << y) | (x >>> -y);
    }

    private void resetCounter()
    {
        cW0 = 0;
        cW1 = 0;
        cW2 = 0;
    }

    private boolean limitExceeded()
    {
        if (++cW0 == 0)
        {
            if (++cW1 == 0)
            {
                return (++cW2 & 0x20) != 0;          // 2^(32 + 32 + 6)
            }
        }

        return false;
    }

    /*
     * this relies on the fact len will always be positive.
     */
    private boolean limitExceeded(int len)
    {
        cW0 += len;
        if (cW0 < len && cW0 >= 0)
        {
            if (++cW1 == 0)
            {
                return (++cW2 & 0x20) != 0;          // 2^(32 + 32 + 6)
            }
        }

        return false;
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy